ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermally induced generation and annihilation of magnetic chiral skyrmion bubbles and achiral bubbles in Mn-Ni-Ga Magnets

266   0   0.0 ( 0 )
 نشر من قبل Bei Ding
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic chiral skyrmion bubbles and achiral bubbles are two independent magnetic domain structures, in which the former with equivalent winding number to skyrmions offers great promise as information carriers for further spintronic devices. Here, in this work, we experimentally investigate the generation and annihilation of magnetic chiral skyrmion bubbles and achiral bubbles in the Mn-Ni-Ga thin plate by using the Lorentz transmission electron microscopy (L-TEM). The two independent magnetic domain structures can be directly controlled after the field cooling manipulation by varying the titled angles of external magnetic fields. By imaging the magnetization reversal with increasing temperature, we found an extraordinary annihilation mode of magnetic chiral skyrmion bubbles and a non-linear frequency for the winding number reversal. Quantitative analysis of such dynamics was performed by using L-TEM to directly determine the barrier energy for the magnetization reversal of magnetic chiral skyrmion bubbles.



قيم البحث

اقرأ أيضاً

Topologically protected magnetic structures such as skyrmions and domain walls (DWs) have drawn a great deal of attention recently due to their thermal stability and potential for manipulation by spin current, which is the result of chiral magnetic c onfigurations induced by the interfacial Dzyaloshinskii-Moriya Interaction (DMI). Designing devices that incorporate DMI necessitates a thorough understanding of how the interaction presents and can be measured. One approach is to measure growth asymmetry of chiral bubble domains in perpendicularly magnetized thin films, which has been described elsewhere by thermally activated DW motion. Here, we demonstrate that the anisotropic angular dependence of DW energy originating from the DMI is critical to understanding this behavior. Domains in Co/Ni multi-layers are observed to preferentially grow into non-elliptical teardrop shapes, which vary with the magnitude of an applied in-plane field. We model the domain profile using energetic calculations of equilibrium shape via the Wulff construction, which explains both the teardrop shape and the reversal of growth symmetry at large fields.
Nanoscale magnetic skyrmions are considered as potential information carriers for future spintronics memory and logic devices. Such applications will require the control of their local creation and annihilation, which involves so far solutions that a re either energy consuming or difficult to integrate. Here we demonstrate the control of skyrmion bubbles nucleation and annihilation using electric field gating, an easily integrable and potentially energetically efficient solution. We present a detailed stability diagram of the skyrmion bubbles in a Pt/Co/oxide trilayer and show that their stability can be controlled via an applied electric field. An analytical bubble model, with the Dzyaloshinskii-Moriya interaction imbedded in the domain wall energy, account for the observed electrical skyrmion switching effect. This allows us to unveil the origin of the electrical control of skyrmions stability and to show that both magnetic dipolar interaction and the Dzyaloshinskii-Moriya interaction play an important role in the skyrmion bubble stabilization.
416 - Bei Ding , Zefang Li , Guizhou Xu 2019
Two-dimensional (2D) van der Waals (vdW) magnetic materials have recently been introduced as a new horizon in materials science and enable the potential applications for next-generation spintronic devices. Here, in this communication, the observation s of stable Bloch-type magnetic skyrmions in single crystals of 2D vdW Fe3GeTe2 (FGT) are reported by using in-situ Lorentz transmission electron microscopy (TEM). We find the ground-state magnetic stripe domains in FGT transform into skyrmion bubbles when an external magnetic field is applied perpendicularly to the (001) thin plate with temperatures below the Curie-temperature TC. Most interestingly, a hexagonal lattice of skyrmion bubbles is obtained via field cooling manipulation with magnetic field applied along the [001] direction. Owing to their topological stability, the skyrmion bubble lattices are stable to large field-cooling tilted angles and further reproduced by utilizing the micromagnetic simulations. These observations directly demonstrate that the 2D vdW FGT possesses a rich variety of topological spin textures, being of a great promise candidate for future applications in the field of spintronics.
99 - Bei Ding , Jie Cui , Guizhou Xu 2019
Understanding the dynamics of the magnetic skyrmion, a particle-like topologically stable spin texture, and its response dynamics to external fields are indis-pensable for the applications in spintronic devices. In this letter, the Lorentz transmis-s ion electron microscopy (LTEM) was used to investigate the spin chirality of the mag-netic skyrmion bubbles (SKBs) in the centrosymmetric magnet MnNiGa at room tem-perature. The reversal of SKBs excited by the in-plane magnetic field has been revealed. Moreover, the collective behavior of interacting spin chirality can be manipulated by reversing the directions of the magnetic fields on a wedge-shaped thin plate. The dy-namic behavior of the bubbles at different position of the thin plate has been explored with the micromagnetic simulation, indicating a non-uniform and nontrivial dynamic magnetization on the surfaces and center of the thin plate during the spin chirality re-versal. The results suggest that the controllable symmetry breaking of the SKBs arising from thickness variation provides an ability to manipulate the collective behavior of the spin chirality with small external fields, leading to a promising application in nonvola-tile spintronic devices for magnetic skyrmions.
238 - A. T. Zayak , P. Entel 2004
We report results of textit{ab-initio} calculations of the ferromagnetic Heusler alloy Ni-Mn-Ga. Particular emphasis is placed on the stability of the low temperature tetragonal structure with $c/a = 0.94$. This structure cannot be derived from the p arent L2$_1$ structure by a simple homogeneous strain associated with the soft elastic constant $C$. In order to stabilise the tetragonal phase, one has to take into account shuffles of atoms, which form a wave-like pattern of atomic displacements with a well defined period (modulation). While the modulation is related to the soft acoustic [110]-TA$_2$ phonon mode observed in Ni$_2$MnGa, we obtain additional atomic shuffles, which are related to acoustic-optical coupling of the phonons in Ni$_2$MnGa. In addition, we have simulated an off-stoichiometric systems, in which 25 % of Mn atoms are replaced by Ni. The energy of this structure also exhibits a local minimum at $c/a = 0.94$. This allows us to conclude that both shuffles and atomic disorder stabilize the $c/a = 0.94$ structure. In both cases the stability seems to be associated with a dip in the minority-spin density of states (DOS) at the Fermi level, being related to the formation of hybrid states of Ni-textit{d} and Ga-textit{p} minority-spin orbitals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا