ﻻ يوجد ملخص باللغة العربية
The production of $W^{pm}H$, $ZH$, $W^+W^-$, and $W^pm Z$ pairs probes non-Standard-Model interactions of quarks, gauge bosons, and the Higgs boson. New effects can be parameterized in terms of an effective field theory (EFT) where the Lagrangian is expanded in terms of higher-dimension operators suppressed by increasing powers of a high scale $Lambda$. We examine the importance of including next-to-leading-order QCD corrections in global fits to the coefficients of the EFT. The numerical implications on the fits due to different approaches to enforcing the validity of the EFT are quantified. We pay particular attention to the dependence of the fits on the expansion in $1/Lambda^2$ since the differences between results calculated at ${cal {O}}(1/Lambda^2)$ and ${cal{O}}(1/Lambda^4)$ may give insight into the possible significance of dimension-8 effects.
Drell Yan production is a sensitive probe of new physics and as such has been calculated to high order in both the electroweak and QCD sectors of the Standard Model, allowing for precision comparisons between theory and data. Here we extend these cal
The calculation of next-to-leading order (NLO) perturbative corrections at fixed operator dimension in Standard Model Effective Field Theory (SMEFT) has been a topic of much recent interest. In this paper we obtain the NLO corrections from dimension-
The tri-boson production is one of the key processes for the study of quartic gauge couplings. Next-to-leading order (NLO) corrections are mandatory to reduce theoretical uncertainties. In this study, the most up-to-date predictions including NLO QCD
The pair production of a $W$ and a $Z$ boson at the LHC is an important process to study the triple-gauge boson couplings as well as to probe new physics that could arise in the gauge sector. In particular the leptonic channel $p p to W^pm Zto 3ell +
We introduce a new version of the FONLL code, now capable of calculating differential distributions for top quark production with next-to-leading-log resummation of log(p_t/m) terms. Numerical results for LHC and FCC kinematics are presented. In the