ترغب بنشر مسار تعليمي؟ اضغط هنا

The Shape of the Electric Dipole Function Determines the Sub-Picosecond Dynamics of Anharmonic Vibrational Polaritons

136   0   0.0 ( 0 )
 نشر من قبل Felipe Herrera
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a fully quantum mechanical methodology to describe the static properties and the dynamics of a single anharmonic vibrational mode interacting with a quantized infrared cavity field in the strong and ultrastrong coupling regimes. By comparing multiconfiguration time-dependent Hartree (MCTDH) simulations for a Morse oscillator in a cavity, with an equivalent formulation of the problem in Hilbert space, we describe for the first time the essential role of permanent dipole moments in the femtosecond dynamics of vibrational polariton wavepackets. We show that depending on the shape of the electric dipole function $d_e(q)$ along the vibrational mode coordinate $q$, molecules can be classified into three general families. For molecules that are polar and have a positive slope of the dipole function at equilibrium, we show that an initial diabatic light-matter product state without vibrational or cavity excitations can evolve into a polariton wavepacket with a large number of intracavity photons, for interaction strengths at the onset of ultrastrong coupling. This build up of intracavity photon amplitude is accompanied by an effective $lengthening$ of the vibrational mode of nearly $10%$, comparable with a laser-induced vibrational excitation in free space. In contrast, molecules that are also polar at equilibrium but have a negative slope of the dipole function, experience an effective mode $shortening$ under equivalent coupling conditions. Our model predictions are numerically validated using realistic $ab$-$initio$ potentials and dipole functions for HF and CO$_2$ molecules in their ground electronic states. We finally propose a non-adiabatic state preparation scheme to generate vibrational polaritons using nanoscale infrared antennas and UV-vis photochemistry or electron tunneling, to enable the far-field detection of spontaneously generated infrared quantum light.

قيم البحث

اقرأ أيضاً

We propose a cavity QED approach to describe light-matter interaction between an individual anharmonic molecular vibration and an infrared cavity field. Starting from a generic Morse oscillator with quantized nuclear motion, we derive a multi-level q uantum Rabi model to study vibrational polaritons beyond the rotating-wave approximation. We analyze the spectrum of vibrational polaritons in detail and compare with available experiments. For high excitation energies, the spectrum exhibits a dense manifold of true and avoided level crossings as the light-matter coupling strength and cavity frequency are tuned. These crossings are governed by a pseudo parity selection rule imposed by the cavity field. We also analyze polariton eigenstates in nuclear coordinate space. We show that the bond length of a vibrational polariton at a given energy is never greater than the bond length of a bare Morse oscillator with the same energy. This type of bond hardening of vibrational polaritons occurs at the expense of the creation of virtual infrared cavity photons, and may have implications in chemical reactivity.
Combining two-color infared pump-probe spectroscopy and anharmonic force field calculations we characterize the anharmonic coupling patterns between fingerprint modes and the hydrogen-bonded symmetric NH$_2$ stretching vibration in adenine-thymine dA $_{20}$-dT$_{20}$ DNA oligomers. Specifically, it is shown that the anharmonic coupling between the NH$_2$ bending and the CO stretching vibration, both absorbing around 1665 cm-1, can be used to assign the NH$_2$ fundamental transition at 3215 cm-1 despite the broad background absorption of water.
While powerful techniques exist to accurately account for anharmonicity in vibrational molecular spectroscopy, they are computationally very expensive and cannot be routinely employed for large species and/or at non- zero vibrational temperatures. Mo tivated by the study of Polycyclic Aromatic Hydrocarbon (PAH) emission in space, we developed a new code, which takes into account all modes and can describe all IR transitions including bands becoming active due to resonances as well as overtones, combination and difference bands. In this article, we describe the methodology that was implemented and discuss how the main difficulties were overcome, so as to keep the problem tractable. Benchmarking with high-level calculations was performed on a small molecule. We carried out specific convergence tests on two prototypical PAHs, pyrene (C$_{16}$H$_{10}$) and coronene (C$_{24}$H$_{12}$), aiming at optimising tunable parameters to achieve both acceptable accuracy and computational costs for this class of molecules. We then report the results obtained at 0 K for pyrene and coronene, comparing the calculated spectra with available experimental data. The theoretical band positions were found to be significantly improved compared to harmonic Density Functional Theory (DFT) calculations. The band intensities are in reasonable agreement with experiments, the main limitation being the accuracy of the underlying calculations of the quartic force field. This is a first step towards calculating moderately high-temperature spectra of PAHs and other similarly rigid molecules using Monte Carlo sampling.
We provide a theory of the deflection of polar and non-polar rotating molecules by inhomogeneous static electric field. Rainbow-like features in the angular distribution of the scattered molecules are analyzed in detail. Furthermore, we demonstrate t hat one may efficiently control the deflection process with the help of short and strong femtosecond laser pulses. In particular the deflection process may by turned-off by a proper excitation, and the angular dispersion of the deflected molecules can be substantially reduced. We study the problem both classically and quantum mechanically, taking into account the effects of strong deflecting field on the molecular rotations. In both treatments we arrive at the same conclusions. The suggested control scheme paves the way for many applications involving molecular focusing, guiding, and trapping by inhomogeneous fields.
We present closed-form analytic solutions to non-secular Bloch-Redfield master equations for quantum dynamics of a V-type system driven by weak coupling to a thermal bath. We focus on noise-induced Fano coherences among the excited states induced by incoherent driving of the V-system initially in the ground state. For suddenly turned-on incoherent driving, the time evolution of the coherences is determined by the damping parameter $zeta=frac{1}{2}(gamma_1+gamma_2)/Delta_p$, where $gamma_i$ are the radiative decay rates of the excited levels $i=1,2$, and $Delta_p=sqrt{Delta^2 + (1-p^2)gamma_1gamma_2}$ depends on the excited-state level splitting $Delta>0$ and the angle between the transition dipole moments in the energy basis. The coherences oscillate as a function of time in the underdamped limit ($zetagg1$), approach a long-lived quasi-steady state in the overdamped limit ($zetall 1$), and display an intermediate behavior at critical damping ($zeta= 1$). The sudden incoherent turn-on generates a mixture of excited eigenstates $|e_1rangle$ and $|e_2rangle$ and their in-phase coherent superposition $|phi_+rangle = frac{1}{sqrt{2bar{r}}}(sqrt{r_1} |e_1rangle + sqrt{r_2}|e_2rangle)$, which is remarkably long-lived in the overdamped limit (where $r_1$ and $r_2$ are the incoherent pumping rates). Formation of this coherent superposition {it enhances} the decay rate from the excited states to the ground state. In the strongly asymmetric V-system where the coupling strengths between the ground state and the excited states differ significantly, we identify additional asymptotic quasistationary coherences, which arise due to slow equilibration of one of the excited states. Finally, we demonstrate that noise-induced Fano coherences are maximized with respect to populations when $r_1=r_2$ and the transition dipole moments are fully aligned.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا