ترغب بنشر مسار تعليمي؟ اضغط هنا

Effects of deterministic disorder at deeply subwavelength scales in multilayered dielectric metamaterials

126   0   0.0 ( 0 )
 نشر من قبل Vincenzo Galdi
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It is common understanding that multilayered dielectric metamaterials, in the regime of deeply subwavelength layers, are accurately described by simple effective-medium models based on mixing formulas that do not depend on the spatial arrangement. In the wake of recent studies that have shown counterintuitive examples of periodic and aperiodic (orderly or random) scenarios in which this premise breaks down, we study here the effects of deterministic disorder. With specific reference to a model based on Golay-Rudin-Shapiro sequences, we illustrate certain peculiar boundary effects that can occur in finite-size dielectric multilayers, leading to anomalous light-transport properties that are in stark contrast with the predictions from conventional effective-medium theory. Via parametric and comparative studies, we elucidate the underlying physical mechanisms, also highlighting similarities and differences with respect to previously studied geometries. Our outcomes may inspire potential applications to optical sensing, switching and lasing.

قيم البحث

اقرأ أيضاً

For dielectric multilayered metamaterials, the effective-parameter representation is known to be insensitive to geometrical features occurring at deeply subwavelength scales. However, recent studies on periodic and aperiodically ordered geometries ha ve shown the existence of certain critical parameter regimes where this conventional wisdom is upended, as the optical response of finite-size samples may depart considerably from the predictions of standard effective-medium theory. In these regimes, characterized by a mixed evanescent/propagating light transport, different classes of spatial (dis)order have been shown to induce distinctive effects in the optical response, in terms of anomalous transmission, localization, enhancement, absorption and lasing. Here, we further expand these examples by considering a quasiperiodic scenario based on a modified-Fibonacci geometry. Among the intriguing features of this model there is the presence of a scale parameter that controls the transition from perfectly periodic to quasiperiodic scenarios of different shades. Via an extensive parametric study, this allows us to identify the quasiperiodicity-induced anomalous effects, and to elucidate certain distinctive mechanisms and footprints. Our results hold potentially interesting implications for the optical probing of structural features at a resolution much smaller than the wavelength, and could also be leveraged to design novel types of absorbers and low-threshold lasers.
Nonlocal (spatial-dispersion) effects in multilayered metamaterials composed of periodic stacks of alternating, deeply subwavelength dielectric layers are known to be negligibly weak. Counterintuitively, under certain critical conditions, weak nonloc ality may build up strong boundary effects that are not captured by conventional (local) effective-medium models based on simple mixing formulas. Here, we show that this phenomenon can be fruitfully studied and understood in terms of error propagation in the iterated maps of the trace and anti-trace of the optical transfer matrix of the multilayer. Our approach effectively parameterizes these peculiar effects via remarkably simple and insightful closed-form expressions, which enable direct identification of the critical parameters and regimes. We also show how these boundary effects can be captured by suitable nonlocal corrections.
The exciting discovery of topological condensed matter systems has lately triggered a search for their photonic analogs, motivated by the possibility of robust backscattering-immune light transport. However, topological photonic phases have so far on ly been observed in photonic crystals and waveguide arrays, which are inherently physically wavelength scaled, hindering their application in compact subwavelength systems. In this letter, we tackle this problem by patterning the deep subwavelength resonant elements of metamaterials onto specific lattices, and create crystalline metamaterials that can develop complex nonlocal properties due to multiple scattering, despite their very subwavelength spatial scale that usually implies to disregard their structure. These spatially dispersive systems can support subwavelength topological phases, as we demonstrate at microwaves by direct field mapping. Our approach gives a straightforward tabletop platform for the study of photonic topological phases, and allows to envision applications benefiting the compactness of metamaterials and the amazing potential of topological insulators.
Recent studies on fully dielectric multilayered metamaterials have shown that the negligibly small nonlocal effects (spatial dispersion) typically observed in the limit of deeply subwavelength layers may be significantly enhanced by peculiar boundary effects occurring in certain critical parameter regimes. These phenomena, observed so far in periodic and randomly disordered geometries, are manifested as strong differences between the exact optical response of finite-size metamaterial samples and the prediction from conventional effective-theory-medium models based on mixing formulae. Here, with specific focus on the Thue-Morse geometry, we make a first step toward extending the studies above to the middle-ground of aperiodically ordered multilayers, lying in between perfect periodicity and disorder. We show that, also for these geometries, there exist critical parameter ranges that favor the buildup of boundary effects leading to strong enhancement of the (otherwise negligibly weak) nonlocality. However, the underlying mechanisms are fundamentally different from those observed in the periodic case, and exhibit typical footprints (e.g., fractal gaps, quasi-localized states) that are distinctive of aperiodic order. The outcomes of our study indicate that aperiodic order plays a key role in the buildup of the aforementioned boundary effects, and may also find potential applications to optical sensors, absorbers and lasers.
We propose an approach to enhance and direct the spontaneous emission from isolated emitters embedded inside hyperbolic metamaterials into single photon beams. The approach rests on collective plasmonic Bloch modes of hyperbolic metamaterials which p ropagate in highly directional beams called quantum resonance cones. We propose a pumping scheme using the transparency window of the hyperbolic metamaterial that occurs near the topological transition. Finally, we address the challenge of outcoupling these broadband resonance cones into vacuum using a dielectric bullseye grating. We give a detailed analysis of quenching and design the metamaterial to have a huge Purcell factor in a broad bandwidth inspite of the losses in the metal. Our work should help motivate experiments in the development of single photon sources for broadband emitters such as nitrogen vacancy centers in diamond.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا