ترغب بنشر مسار تعليمي؟ اضغط هنا

XPersona: Evaluating Multilingual Personalized Chatbot

102   0   0.0 ( 0 )
 نشر من قبل Zhaojiang Lin
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Personalized dialogue systems are an essential step toward better human-machine interaction. Existing personalized dialogue agents rely on properly designed conversational datasets, which are mostly monolingual (e.g., English), which greatly limits the usage of conversational agents in other languages. In this paper, we propose a multi-lingual extension of Persona-Chat, namely XPersona. Our dataset includes persona conversations in six different languages other than English for building and evaluating multilingual personalized agents. We experiment with both multilingual and cross-lingual trained baselines, and evaluate them against monolingual and translation-pipeline models using both automatic and human evaluation. Experimental results show that the multilingual trained models outperform the translation-pipeline and that they are on par with the monolingual models, with the advantage of having a single model across multiple languages. On the other hand, the state-of-the-art cross-lingual trained models achieve inferior performance to the other models, showing that cross-lingual conversation modeling is a challenging task. We hope that our dataset and baselines will accelerate research in multilingual dialogue systems.



قيم البحث

اقرأ أيضاً

Natural language dialogue systems raise great attention recently. As many dialogue models are data-driven, high-quality datasets are essential to these systems. In this paper, we introduce Pchatbot, a large-scale dialogue dataset that contains two su bsets collected from Weibo and Judicial forums respectively. To adapt the raw dataset to dialogue systems, we elaborately normalize the raw dataset via processes such as anonymization, deduplication, segmentation, and filtering. The scale of Pchatbot is significantly larger than existing Chinese datasets, which might benefit the data-driven models. Besides, current dialogue datasets for personalized chatbot usually contain several persona sentences or attributes. Different from existing datasets, Pchatbot provides anonymized user IDs and timestamps for both posts and responses. This enables the development of personalized dialogue models that directly learn implicit user personality from the users dialogue history. Our preliminary experimental study benchmarks several state-of-the-art dialogue models to provide a comparison for future work. The dataset can be publicly accessed at Github.
Personalized chatbots focus on endowing chatbots with a consistent personality to behave like real users, give more informative responses, and further act as personal assistants. Existing personalized approaches tried to incorporate several text desc riptions as explicit user profiles. However, the acquisition of such explicit profiles is expensive and time-consuming, thus being impractical for large-scale real-world applications. Moreover, the restricted predefined profile neglects the language behavior of a real user and cannot be automatically updated together with the change of user interests. In this paper, we propose to learn implicit user profiles automatically from large-scale user dialogue history for building personalized chatbots. Specifically, leveraging the benefits of Transformer on language understanding, we train a personalized language model to construct a general user profile from the users historical responses. To highlight the relevant historical responses to the input post, we further establish a key-value memory network of historical post-response pairs, and build a dynamic post-aware user profile. The dynamic profile mainly describes what and how the user has responded to similar posts in history. To explicitly utilize users frequently used words, we design a personalized decoder to fuse two decoding strategies, including generating a word from the generic vocabulary and copying one word from the users personalized vocabulary. Experiments on two real-world datasets show the significant improvement of our model compared with existing methods. Our code is available at https://github.com/zhengyima/DHAP
Despite the increasing number of large and comprehensive machine translation (MT) systems, evaluation of these methods in various languages has been restrained by the lack of high-quality parallel corpora as well as engagement with the people that sp eak these languages. In this study, we present an evaluation of state-of-the-art approaches to training and evaluating MT systems in 22 languages from the Turkic language family, most of which being extremely under-explored. First, we adopt the TIL Corpus with a few key improvements to the training and the evaluation sets. Then, we train 26 bilingual baselines as well as a multi-way neural MT (MNMT) model using the corpus and perform an extensive analysis using automatic metrics as well as human evaluations. We find that the MNMT model outperforms almost all bilingual baselines in the out-of-domain test sets and finetuning the model on a downstream task of a single pair also results in a huge performance boost in both low- and high-resource scenarios. Our attentive analysis of evaluation criteria for MT models in Turkic languages also points to the necessity for further research in this direction. We release the corpus splits, test sets as well as models to the public.
This paper provides an overall presentation of the M-PIRO project. M-PIRO is developing technology that will allow museums to generate automatically textual or spoken descriptions of exhibits for collections available over the Web or in virtual reali ty environments. The descriptions are generated in several languages from information in a language-independent database and small fragments of text, and they can be tailored according to the backgrounds of the users, their ages, and their previous interaction with the system. An authoring tool allows museum curators to update the systems database and to control the language and content of the resulting descriptions. Although the project is still in progress, a Web-based demonstrator that supports English, Greek and Italian is already available, and it is used throughout the paper to highlight the capabilities of the emerging technology.
The recently proposed massively multilingual neural machine translation (NMT) system has been shown to be capable of translating over 100 languages to and from English within a single model. Its improved translation performance on low resource langua ges hints at potential cross-lingual transfer capability for downstream tasks. In this paper, we evaluate the cross-lingual effectiveness of representations from the encoder of a massively multilingual NMT model on 5 downstream classification and sequence labeling tasks covering a diverse set of over 50 languages. We compare against a strong baseline, multilingual BERT (mBERT), in different cross-lingual transfer learning scenarios and show gains in zero-shot transfer in 4 out of these 5 tasks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا