ﻻ يوجد ملخص باللغة العربية
Binary black holes (BBHs) are thought to form in different environments, including the galactic field and (globular, nuclear, young and open) star clusters. Here, we propose a method to estimate the fingerprints of the main BBH formation channels associated with these different environments. We show that the metallicity distribution of galaxies in the local Universe along with the relative amount of mergers forming in the field or in star clusters determine the main properties of the BBH population. Our fiducial model predicts that the heaviest merger to date, GW170729, originated from a progenitor that underwent 2--3 merger events in a dense star cluster, possibly a galactic nucleus. The model predicts that at least one merger remnant out of 100 BBH mergers in the local Universe has mass $90 < M_{rm rem}/ {rm ~M}_odot leq{} 110$, and one in a thousand can reach a mass as large as $M_{rm rem} gtrsim 250$ M$_odot$. Such massive black holes would bridge the gap between stellar-mass and intermediate-mass black holes. The relative number of low- and high-mass BBHs can help us unravelling the fingerprints of different formation channels. Based on the assumptions of our model, we expect that isolated binaries are the main channel of BBH merger formation if $sim 70%$ of the whole BBH population has remnants masses $<50$ M$_odot$, whereas $gtrsim{}6$% of remnants with masses $>75$ M$_odot$ point to a significant sub-population of dynamically formed BBH binaries.
We present accurate fits for the remnant properties of generically precessing binary black holes, trained on large banks of numerical-relativity simulations. We use Gaussian process regression to interpolate the remnant mass, spin, and recoil velocit
Although the main features of the evolution of binary neutron star systems are now well established, many details are still subject to debate, especially regarding the post-merger phase. In particular, the lifetime of the hyper-massive neutron stars
We review the main physical processes that lead to the formation of stellar binary black holes (BBHs) and to their merger. BBHs can form from the isolated evolution of massive binary stars. The physics of core-collapse supernovae and the process of c
In this paper we continue the first ever study of magnetized mini-disks coupled to circumbinary accretion in a supermassive binary black hole (SMBBH) approaching merger reported in Bowen et al. 2018. We extend this simulation from 3 to 12 binary orbi
The bright blazar OJ 287 is the best-known candidate for hosting a nanohertz gravitational wave (GW) emitting supermassive binary black hole (SMBBH) in the present observable universe. The binary black hole (BBH) central engine model, proposed by Leh