ﻻ يوجد ملخص باللغة العربية
Entanglement is a key resource in many quantum information applications and achieving high values independently of the initial conditions is an important task. Here we address the problem of generating highly entangled states in a discrete time quantum walk irrespective of the initial state using two different approaches. First, we present and analyze a deterministic sequence of coin operators which produces high values of entanglement in a universal manner for a class of localized initial states. In a second approach, we directly optimize the sequence of coin operators using a reinforcement learning algorithm. While the amount of entanglement produced by the deterministic sequence is fully independent of the initial states considered, the optimized sequences achieve in general higher average values of entanglement that do however depend on the initial state parameters. Our proposed sequence and optimization algorithm are especially useful in cases where the initial state is not fully known or entanglement has to be generated in a universal manner for a range of initial states.
Quantum walk (QW) is the quantum analog of the random walk. QW is an integral part of the development of numerous quantum algorithms. Hence, an in-depth understanding of QW helps us to grasp the quantum algorithms. We revisit the one-dimensional disc
In this paper we unveil some features of a discrete-time quantum walk on the line whose coin depends on the temporal variable. After considering the most general form of the unitary coin operator, we focus on the role played by the two phase factors
We make and generalize the observation that summing of probability amplitudes of a discrete-time quantum walk over partitions of the walking graph consistent with the step operator results in a unitary evolution on the reduced graph which is also a q
We provide an explanation of recent experimental results of Xue et al., where full revivals in a time-dependent quantum walk model with a periodically changing coin are found. Using methods originally developed for electric walks with a space-depende
Quantum walks are a promising framework for developing quantum algorithms and quantum simulations. Quantum walks represent an important test case for the application of quantum computers. Here we present different forms of discrete-time quantum walks