ﻻ يوجد ملخص باللغة العربية
Preference analysis is widely applied in various domains such as social choice and e-commerce. A recently proposed framework augments the relational database with a preference relation that represents uncertain preferences in the form of statistical ranking models, and provides methods to evaluate Conjunctive Queries (CQs) that express preferences among item attributes. In this paper, we explore the evaluation of queries that are more general and harder to compute. The main focus of this paper is on a class of CQs that cannot be evaluated by previous work. These queries are provably hard since relate variables that represent items being compared. To overcome this hardness, we instantiate these variables with their domain values, rewrite hard CQs as unions of such instantiated queries, and develop several exact and approximate solvers to evaluate these unions of queries. We demonstrate that exact solvers that target specific common kinds of queries are far more efficient than general solvers. Further, we demonstrate that sophisticated approximate solvers making use of importance sampling can be orders of magnitude more efficient than exact solvers, while showing good accuracy. In addition to supporting provably hard CQs, we also present methods to evaluate an important family of count queries, and of top-k queries.
Unstructured enterprise data such as reports, manuals and guidelines often contain tables. The traditional way of integrating data from these tables is through a two-step process of table detection/extraction and mapping the table layouts to an appro
We study here fundamental issues involved in top-k query evaluation in probabilistic databases. We consider simple probabilistic databases in which probabilities are associated with individual tuples, and general probabilistic databases in which, add
Unstructured data is now commonly queried by using target deep neural networks (DNNs) to produce structured information, e.g., object types and positions in video. As these target DNNs can be computationally expensive, recent work uses proxy models t
In this paper, we formulate a top-k query that compares objects in a database to a user-provided query object on a novel scoring function. The proposed scoring function combines the idea of attractive and repulsive dimensions into a general framework
We present here a formal foundation for an iterative and incremental approach to constructing and evaluating preference queries. Our main focus is on query modification: a query transformation approach which works by revising the preference relation