ﻻ يوجد ملخص باللغة العربية
We have obtained a very deep exposure (813 ks) of $zeta,$Puppis (O4 supergiant) with the Chandra/HETG Spectrometer. Here we report on analysis of the 1-9 r{A} region, especially well suited for Chandra, which has a significant contribution from continuum emission between well separated emission lines from high-ionization species. These data allow us to study the hottest plasma present through the continuum shape and emission line strengths. Assuming a powerlaw emission measure distribution which has a high-temperature cut-off, we find that the emission is consistent with a thermal spectrum having a maximum temperature of 12 MK. This implies an effective wind shock velocity of $900,mathrm{km,s^{-1}}$, well below the wind terminal speed of $2250,mathrm{km,s^{-1}}$. For X-ray emission which forms close to the star, the speed and X-ray flux are larger than can be easily reconciled with strictly self-excited line-deshadowing-instability models, suggesting a need for a fraction of the wind to be accelerated extremely rapidly right from the base. This is not so much a dynamical instability as a nonlinear response to changing boundary conditions.
Aims: zeta Puppis, one of the closest and brightest massive stars, was the first early-type object observed by the current generation of X-ray observatories. These data provided some surprising results, confirming partly the theoretical predictions w
A subset (~ 10%) of massive stars present strong, globally ordered (mostly dipolar) magnetic fields. The trapping and channeling of their stellar winds in closed magnetic loops leads to magnetically confined wind shocks (MCWS), with pre-shock flow sp
New long Chandra grating observations of the O supergiant $zeta$ Pup show not only a brightening of the x-ray emission line flux of 13 per cent in the 18 years since Chandras first observing cycle, but also clear evidence - at more than four sigma si
X-ray satellites since Einstein have empirically established that the X-ray luminosity from single O-stars scales linearly with bolometric luminosity, Lx ~ 10^{-7} Lbol. But straightforward forms of the most favored model, in which X-rays arise from
WR 25 is a colliding-wind binary star system comprised of a very massive O2.5If*/WN6 primary and an O-star secondary in a 208-day period eccentric orbit. These hot stars have strong, highly-supersonic winds which interact to form a bright X-ray sourc