ترغب بنشر مسار تعليمي؟ اضغط هنا

New quantum phases of matter: Topological Materials

165   0   0.0 ( 0 )
 نشر من قبل Vishal Bhardwaj Mr.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this article, we provide an overview of the basic concepts of novel topological materials. This new class of materials developed by combining the Weyl/Dirac fermionic electron states and magnetism, provide a materials-science platform to test predictions of the laws of topological physics. Owing to their dissipationless transport, these materials hold high promises for technological applications in quantum computing and spintronics devices.

قيم البحث

اقرأ أيضاً

Topological semimetals exhibit band crossings near the Fermi energy, which are protected by the nontrivial topological character of the wave functions. In many cases, these topological band degeneracies give rise to exotic surface states and unusual magneto-transport properties. In this paper, we present a complete classification of all possible nonsymmorphic band degeneracies in hexagonal materials with strong spin-orbit coupling. This includes (i) band crossings protected by conventional nonsymmorphic symmetries, whose partial translation is within the invariant space of the mirror/rotation symmetry; and (ii) band crossings protected by off-centered mirror/rotation symmetries, whose partial translation is orthogonal to the invariant space. Our analysis is based on (i) the algebraic relations obeyed by the symmetry operators and (ii) the compatibility relations between irreducible representations at different high-symmetry points of the Brillouin zone. We identify a number of existing materials where these nonsymmorphic nodal lines are realized. Based on these example materials, we examine the surface states that are associated with the topological band crossings. Implications for experiments and device applications are briefly discussed.
We study the laser control of magnon topological phases induced by the Aharonov-Casher effect in insulating antiferromagnets (AFs). Since the laser electric field can be considered as a time-periodic perturbation, we apply the Floquet theory and perf orm the inverse frequency expansion by focusing on the high frequency region. Using the obtained effective Floquet Hamiltonian, we study nonequilibrium magnon dynamics away from the adiabatic limit and its effect on topological phenomena. We show that a linearly polarized laser can generate helical edge magnon states and induce the magnonic spin Nernst effect, whereas a circularly polarized laser can generate chiral edge magnon states and induce the magnonic thermal Hall effect. In particular, in the latter, we find that the direction of the magnon chiral edge modes and the resulting thermal Hall effect can be controlled by the chirality of the circularly polarized laser through the change from the left-circular to the right-circular polarization. Our results thus provide a handle to control and design magnon topological properties in the insulating AF.
Knowledge of the topology of the electronic ground state of materials has led to deep insights to novel phenomena such as the integer quantum Hall effect and fermion-number fractionalization, as well as other properties of matter. Joining two insulat ors of different topological classes produces fascinating boundary states in the band gap. Another exciting recent development is the bottom-up synthesis (from molecular precursors) of graphene nanoribbons (GNRs) with atomic precision control of their edge and width. Here we connect these two fields, and show for the first time that semiconducting GNRs of different width, edge, and end termination belong to different topological classes. The topology of GNRs is protected by spatial symmetries and dictated by the terminating unit cell. We have derived explicit formula for their topological invariants, and show that localized junction states developed between two GNRs of distinct topology may be tuned by lateral junction geometry. The topology of a GNR can be further modified by dopants, such as a periodic array of boron atoms. In a superlattice consisted of segments of doped and pristine GNRs, the junction states are stable spin centers, forming a Heisenberg antiferromagnetic spin 1/2 chain with tunable exchange interaction. The discoveries here are not only of scientific interest for studies of quasi one-dimensional systems, but also open a new path for design principles of future GNR-based devices through their topological characters.
Although the richness of spatial symmetries has led to a rapidly expanding inventory of possible topological crystalline (TC) phases of electrons, physical realizations have been slow to materialize due to the practical difficulty to ascertaining ban d topology in realistic calculations. Here, we integrate the recently established theory of symmetry indicators of band topology into first-principle band-structure calculations, and test it on a databases of previously synthesized crystals. The combined algorithm is found to efficiently unearth topological materials and predict topological properties like protected surface states. On applying our algorithm to just 8 out of the 230 space groups, we already discover numerous materials candidates displaying a diversity of topological phenomena, which are simultaneously captured in a single sweep. The list includes recently proposed classes of TC insulators that had no previous materials realization as well as other topological phases, including: (i) a screw-protected 3D TC insulator, b{eta}-MoTe2, with gapped surfaces except for 1D helical hinge states; (ii) a rotation-protected TC insulator BiBr with coexisting surface Dirac cones and hinge states; (iii) non-centrosymmetric Z2 topological insulators undetectable using the well-established parity criterion, AgXO (X=Na,K,Rb); (iv) a Dirac semimetal MgBi2O6; (v) a Dirac nodal-line semimetal AgF2; and (vi) a metal with three-fold degenerate band crossing near the Fermi energy, AuLiMgSn. Our work showcases how the recent theoretical insights on the fundamentals of band structures can aid in the practical goal of discovering new topological materials.
Topological aspects of the geometry of DNA and similar chiral molecules have received a lot of attention, while the topology of their electronic structure is less explored. Previous experiments have revealed that DNA can efficiently filter spin-polar ized electrons between metal contacts, a process called chiral-induced spin-selectivity (CISS). However, the underlying correlation between chiral structure and electronic spin remains elusive. In this work, we reveal an orbital texture in the band structure, a topological characteristic induced by the chirality. We find that this orbital texture enables the chiral molecule to polarize the quantum orbital. This orbital polarization effect (OPE) induces spin polarization assisted by the spin-orbit interaction from a metal contact and leads to magnetorestistance and chiral separation. The orbital angular momentum of photoelectrons also plays an essential role in related photoemission experiments. Beyond CISS, we predict that OPE can induce spin-selective phenomena even in achiral but inversion-breaking materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا