ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum States of Higher-order Whispering gallery modes in a Silicon Micro-disk Resonator

153   0   0.0 ( 0 )
 نشر من قبل Rakesh Ranjan Kumar
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The quantum states of light in an integrated photonics platform provide an important resource for quantum information processing and takes advantage of the scalability and practicality of silicon photonics. Integrated resonators have been well explored in classical and quantum optics. However, to encode multiple information through integrated quantum optics requires broader utilization of the available degrees of freedom on a chip. Here, we studied the quantum interference between photon pairs of the same higher order whispering gallery modes populated by spontaneous four-wave mixing in an integrated silicon micro-disk resonator. The quantum interference between the photon pairs of the first two quasi-TE0 and quasi-TE1 radial modes was measured to be Vnet ~ 98 + 0.8 % and Vnet ~ 94 + 2.6 %, respectively. The results are promising for achieving higher-dimensional quantum states using the higher-order radial modes of a micro-disk resonator coupled with an integrated waveguide.

قيم البحث

اقرأ أيضاً

We report on the first experimental demonstration of terahertz (THz) whispering-gallery modes (WGMs) with an ultra high quality (Q) factor of $1.5 times {10}^{4}$ at 0.62THz. The WGMs are observed in a high resistivity float zone silicon (HRFZ-Si) sp herical resonator coupled to a sub-wavelength silica waveguide. A detailed analysis of the coherent continuous wave (CW) THz spectroscopy measurements combined with a numerical model based on Mie-Debye-Aden-Kerker (MDAK) theory allows to unambiguously identify the observed higher order radial THz WGMs.
We demonstrate for the first time natural phase matching for optical frequency doubling in a high-Q whispering gallery mode resonator made of Lithium Niobate. A conversion efficiency of 9% is achieved at 30 micro Watt in-coupled continuous wave pump power. The observed saturation pump power of 3.2 mW is almost two orders of magnitude lower than the state-of-the-art. This suggests an application of our frequency doubler as a source of non-classical light requiring only a low-power pump, which easily can be quantum noise limited. Our theoretical analysis of the three-wave mixing in a whispering gallery mode resonator provides the relative conversion efficiencies for frequency doubling in various modes.
Whispering gallery mode (WGM) resonators are compelling optical devices, however they are nearly unexplored in the terahertz (THz) domain. In this letter, we report on THz WGMs in quartz glass bubble resonators with sub-wavelength wall thickness. An unprecedented study of both the amplitude and phase of THz WGMs is presented. The coherent THz frequency domain measurements are in excellent agreement with a simple analytical model and results from numerical simulations. A high finesse of 9 and a quality (Q) factor exceeding 440 at 0.47 THz are observed. Due to the large evanescent field the high Q-factor THz WGM bubble resonators can be used as a compact, highly sensitive sensor in the intriguing THz frequency range.
Quasiclassical approach and geometric optics allow to describe rather accurately whispering gallery modes in convex axisymmetric bodies. Using this approach we obtain practical formulas for the calculation of eigenfrequencies and radiative Q-factors in dielectrical spheroid and compare them with the known solutions for the particular cases and with numerical calculations. We show how geometrical interpretation allows expansion of the method on arbitrary shaped axisymmetric bodies.
Optical Whispering Gallery Modes (WGMs) derive their name from a famous acoustic phenomenon of guiding a wave by a curved boundary observed nearly a century ago. This phenomenon has a rather general nature, equally applicable to sound and all other w aves. It enables resonators of unique properties attractive both in science and engineering. Very high quality factors of optical WGM resonators persisting in a wide wavelength range spanning from radio frequencies to ultraviolet light, their small mode volume, and tunable in- and out- coupling make them exceptionally efficient for nonlinear optical applications. Nonlinear optics facilitates interaction of photons with each other and with other physical systems, and is of prime importance in quantum optics. In this paper we review numerous applications of WGM resonators in nonlinear and quantum optics. We outline the current areas of interest, summarize progress, highlight difficulties, and discuss possible future development trends in these areas.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا