ترغب بنشر مسار تعليمي؟ اضغط هنا

Air-Transfer Production Method for Large-Area Picosecond Photodetectors

137   0   0.0 ( 0 )
 نشر من قبل Henry J. Frisch
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have designed and prototyped the process steps for the batch production of large-area micro-channel-plate photomultipliers (MCP-PMT) using the air-transfer assembly process developed with single $LAPPD^{text{TM}}$ modules. Results are presented addressing the challenges of designing a robust package that can transmit large numbers of electrical signals for pad or strip readout from inside the vacuum tube and hermetically sealing the large-perimeter window-body interface. We have also synthesized a photocathode in a large-area low-aspect-ratio volume, and shown that the micro-channel plates recover their functionality after cathode synthesis. The steps inform a design for a multi-module batch facility employing dual nested low-vacuum (LV) and ultra-high-vacuum (UHV) systems in a small-footprint. The facility design provides full access to multiple MCP-PMT modules prior to hermetic pinch-off for leak-checking and real-time photocathode optimization.

قيم البحث

اقرأ أيضاً

The Large Area Picosecond PhotoDetector (LAPPD) Collaboration was formed in 2009 to develop large-area photodetectors capable of time resolutions measured in pico-seconds, with accompanying sub-millimeter spatial resolution. During the next three and one-half years the Collaboration developed the LAPPD design of 20 x 20 cm modules with gains greater than $10^7$ and non-uniformity less than $15%$, time resolution less than 50 psec for single photons and spatial resolution of 700~microns in both lateral dimensions. We describe the R&D performed to develop large-area micro-channel plate glass substrates, resistive and secondary-emitting coatings, large-area bialkali photocathodes, and RF-capable hermetic packaging. In addition, the Collaboration developed the necessary electronics for large systems capable of precise timing, built up from a custom low-power 15-GigaSample/sec waveform sampling 6-channel integrated circuit and supported by a two-level modular data acquisition system based on Field-Programmable Gate Arrays for local control, data-sparcification, and triggering. We discuss the formation, organization, and technical successes and short-comings of the Collaboration. The Collaboration ended in December 2012 with a transition from R&D to commercialization.
We report on studies of non-toxic scintillating liquid useful for large surface detectors. Arrays of liquid scintillators offer a rather simple tool for detecting charged particles traversing a surface and tracking their path through a defined volume . Insertion of wavelength shifting fibres along the liquid scintillating containers significantly improves the light collection at the two ends of the scintillators. We have demonstrated that we can achieve timing resolution of O(1 ns) allowing good spatial resolution. Liquid scintillators with fibres read by Photo-multipliers or SiPMs provide an inexpensive alternative technology which suits well the requirement of the MATHUSLA experiment tracking system.
MAGIX is a planned experiment that will be implemented at the upcoming accelerator MESA in Mainz. Due to its location in the energy-recovering lane of the accelerator beam-currents up to 1mA with a maximum energy of 105 MeV will be available for prec ision experiments. MAGIX itself consists of a jet-target and two magnetic spectrometers. Inside the spectrometers GEM-based detectors will be used in the focal plane for track reconstruction. The design goals for the detector modules are a spatial resolution of 50 um, a size of 1.20 m x 0.3 m and a minimal material budget. To accomplish these goals we started developing several GEM-prototypes to study different behaviors and techniques to optimize the final detector design. The GEM foils used are provided by CERN and are trained, stretched and framed in our laboratory. The readout is done with an SRS based system. In this contribution the requirements, achievements and the ongoing developments are presented.
The Argonne MCP-based photo detector is an offshoot of the Large Area Pico-second Photo Detector (LAPPD) project, wherein 6 cm x 6 cm sized detectors are made at Argonne National Laboratory. We have successfully built and tested our first detectors f or pico-second timing and few mm spatial resolution. We discuss our efforts to customize these detectors to operate in a cryogenic environment. Initial plans aim to operate in liquid argon. We are also exploring ways to mitigate wave length shifting requirements and also developing bare-MCP photodetectors to operate in a gaseous cryogenic environment.
86 - R. Neilson , F. LePort , A. Pocar 2009
EXO-200 uses 468 large area avalanche photodiodes (LAAPDs) for detection of scintillation light in an ultra-low-background liquid xenon (LXe) detector. We describe initial measurements of dark noise, gain and response to xenon scintillation light of LAAPDs at temperatures from room temperature to 169K - the temperature of liquid xenon. We also describe the individual characterization of more than 800 LAAPDs for selective installation in the EXO-200 detector.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا