ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep Domain-Adversarial Image Generation for Domain Generalisation

68   0   0.0 ( 0 )
 نشر من قبل Kaiyang Zhou
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Machine learning models typically suffer from the domain shift problem when trained on a source dataset and evaluated on a target dataset of different distribution. To overcome this problem, domain generalisation (DG) methods aim to leverage data from multiple source domains so that a trained model can generalise to unseen domains. In this paper, we propose a novel DG approach based on emph{Deep Domain-Adversarial Image Generation} (DDAIG). Specifically, DDAIG consists of three components, namely a label classifier, a domain classifier and a domain transformation network (DoTNet). The goal for DoTNet is to map the source training data to unseen domains. This is achieved by having a learning objective formulated to ensure that the generated data can be correctly classified by the label classifier while fooling the domain classifier. By augmenting the source training data with the generated unseen domain data, we can make the label classifier more robust to unknown domain changes. Extensive experiments on four DG datasets demonstrate the effectiveness of our approach.

قيم البحث

اقرأ أيضاً

State-of-the-art techniques in Generative Adversarial Networks (GANs) have shown remarkable success in image-to-image translation from peer domain X to domain Y using paired image data. However, obtaining abundant paired data is a non-trivial and exp ensive process in the majority of applications. When there is a need to translate images across n domains, if the training is performed between every two domains, the complexity of the training will increase quadratically. Moreover, training with data from two domains only at a time cannot benefit from data of other domains, which prevents the extraction of more useful features and hinders the progress of this research area. In this work, we propose a general framework for unsupervised image-to-image translation across multiple domains, which can translate images from domain X to any a domain without requiring direct training between the two domains involved in image translation. A byproduct of the framework is the reduction of computing time and computing resources, since it needs less time than training the domains in pairs as is done in state-of-the-art works. Our proposed framework consists of a pair of encoders along with a pair of GANs which learns high-level features across different domains to generate diverse and realistic samples from. Our framework shows competing results on many image-to-image tasks compared with state-of-the-art techniques.
Performance achievable by modern deep learning approaches are directly related to the amount of data used at training time. Unfortunately, the annotation process is notoriously tedious and expensive, especially for pixel-wise tasks like semantic segm entation. Recent works have proposed to rely on synthetically generated imagery to ease the training set creation. However, models trained on these kind of data usually under-perform on real images due to the well known issue of domain shift. We address this problem by learning a domain-to-domain image translation GAN to shrink the gap between real and synthetic images. Peculiarly to our method, we introduce semantic constraints into the generation process to both avoid artifacts and guide the synthesis. To prove the effectiveness of our proposal, we show how a semantic segmentation CNN trained on images from the synthetic GTA dataset adapted by our method can improve performance by more than 16% mIoU with respect to the same model trained on synthetic images.
Recent works on domain adaptation reveal the effectiveness of adversarial learning on filling the discrepancy between source and target domains. However, two common limitations exist in current adversarial-learning-based methods. First, samples from two domains alone are not sufficient to ensure domain-invariance at most part of latent space. Second, the domain discriminator involved in these methods can only judge real or fake with the guidance of hard label, while it is more reasonable to use soft scores to evaluate the generated images or features, i.e., to fully utilize the inter-domain information. In this paper, we present adversarial domain adaptation with domain mixup (DM-ADA), which guarantees domain-invariance in a more continuous latent space and guides the domain discriminator in judging samples difference relative to source and target domains. Domain mixup is jointly conducted on pixel and feature level to improve the robustness of models. Extensive experiments prove that the proposed approach can achieve superior performance on tasks with various degrees of domain shift and data complexity.
Image composition is an important operation in image processing, but the inconsistency between foreground and background significantly degrades the quality of composite image. Image harmonization, aiming to make the foreground compatible with the bac kground, is a promising yet challenging task. However, the lack of high-quality publicly available dataset for image harmonization greatly hinders the development of image harmonization techniques. In this work, we contribute an image harmonization dataset iHarmony4 by generating synthesized composite images based on COCO (resp., Adobe5k, Flickr, day2night) dataset, leading to our HCOCO (resp., HAdobe5k, HFlickr, Hday2night) sub-dataset. Moreover, we propose a new deep image harmonization method DoveNet using a novel domain verification discriminator, with the insight that the foreground needs to be translated to the same domain as background. Extensive experiments on our constructed dataset demonstrate the effectiveness of our proposed method. Our dataset and code are available at https://github.com/bcmi/Image_Harmonization_Datasets.
Training generative models, such as GANs, on a target domain containing limited examples (e.g., 10) can easily result in overfitting. In this work, we seek to utilize a large source domain for pretraining and transfer the diversity information from s ource to target. We propose to preserve the relative similarities and differences between instances in the source via a novel cross-domain distance consistency loss. To further reduce overfitting, we present an anchor-based strategy to encourage different levels of realism over different regions in the latent space. With extensive results in both photorealistic and non-photorealistic domains, we demonstrate qualitatively and quantitatively that our few-shot model automatically discovers correspondences between source and target domains and generates more diverse and realistic images than previous methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا