ترغب بنشر مسار تعليمي؟ اضغط هنا

Height fluctuations in homoepitaxial thin film growth: A numerical study

48   0   0.0 ( 0 )
 نشر من قبل Ismael Carrasco D.Sc.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the investigation of height distributions (HDs) and spatial covariances of two-dimensional surfaces obtained from extensive numerical simulations of the celebrated Clarke-Vvedensky (CV) model for homoepitaxial thin film growth. In this model, the effect of temperature, deposition flux, and strengths of atom-atom interactions are encoded in two parameters: the diffusion to deposition ratio $R=D/F$ and $varepsilon$, which is related to the probability of an adatom breaking a lateral bond. We demonstrate that the HDs present a strong dependence on both $R$ and $varepsilon$, and even after the deposition of $10^5$ monolayers (MLs) they are still far from the asymptotics in some cases. For instance, the temporal evolution of the HDs skewness (kurtosis) displays a pronounced minimum (maximum), for small $R$ and $varepsilon$, and only at long times it passes to increase (decrease) toward its asymptotic value. However, it is hard to determine whether they converge to a single value or different nonuniversal ones. For large $R$ and/or $varepsilon$, on the other hand, these quantities clearly converge to the values expected for the Villain-Lai-Das Sarma (VLDS) universality class. A similar behavior is observed in the spatial covariances, but with weaker finite-time effects, so that rescaled curves of them collapse quite well with the one for the VLDS class at long times. Simulations of a model with limited mobility of particles, which captures some essential features of the CV model in the limit of irreversible aggregation ($varepsilon=0$), reveal a similar scenario. Overall, these results point out that the study of fluctuations in homoepitaxial thin films surfaces can be a very difficult task and shall be performed very carefully, once typical experimental films have $lesssim 10^4$ MLs, so that their HDs and covariances can be in the realm of transient regimes.

قيم البحث

اقرأ أيضاً

To study epitaxial thin-film growth, a new model is introduced and extensive kinetic Monte Carlo simulations performed for a wide range of fluxes and temperatures. Varying the deposition conditions, a rich growth diagram is found. The model also repr oduces several known regimes and in the limit of low particle mobility a new regime is defined. Finally, a relation is postulated between the temperatures of the kinetic and thermal roughening transitions.
An equilibrium random surface multistep height model proposed in [Abraham and Newman, EPL, 86, 16002 (2009)] is studied using a variant of the worm algorithm. In one limit, the model reduces to the two-dimensional Ising model in the height representa tion. When the Ising model constraint of single height steps is relaxed, the critical temperature and critical exponents are continuously varying functions of the parameter controlling height steps larger than one. Numerical estimates of the critical exponents can be mapped via a single parameter-- the Coulomb gas coupling-- to the exponents of the O(n) loop model on the honeycomb lattice with n <= 1.
221 - Adam Gamsa , John Cardy 2007
The scaling limit of the spin cluster boundaries of the Ising model with domain wall boundary conditions is SLE with kappa=3. We hypothesise that the three-state Potts model with appropriate boundary conditions has spin cluster boundaries which are a lso SLE in the scaling limit, but with kappa=10/3. To test this, we generate samples using the Wolff algorithm and test them against predictions of SLE: we examine the statistics of the Loewner driving function, estimate the fractal dimension and test against Schramms formula. The results are in support of our hypothesis.
44 - Walter Selke 2014
The temporal evolution of equilibrium fluctuations for surface steps of monoatomic height is analyzed studying one-dimensional solid-on-solid models. Using Monte Carlo simulations, fluctuations due to periphery-diffusion (PD) as well as due to evapor ation-condensation (EC) are considered, both for isolated steps and steps confined by the presence of straight steps. For isolated steps, the dependence of the characteristic power-laws, their exponents and prefactors, on temperature, slope, and curvature is elucidated, with the main emphasis on PD, taking into account finite-size effects. The entropic repulsion due to a second straight step may lead, among others, to an interesting transient power-law like growth of the fluctuations, for PD. Findings are compared to results of previous Monte Carlo simulations and predictions based, mostly, on scaling arguments and Langevin theory.
A theoretical framework is developed to describe experiments on the structure of epitaxial thin films, particularly niobium on sapphire. We extend the hypothesis of dynamical scaling to apply to the structure of thin films from its conventional appli cation to simple surfaces. We then present a phenomenological continuum theory that provides a good description of the observed scattering and the measured exponents. Finally the results of experiment and theory are compared.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا