ﻻ يوجد ملخص باللغة العربية
The macroscopic dynamics of large populations of neurons can be mathematically analyzed using low-dimensional firing-rate or neural-mass models. However, these models fail to capture spike synchronization effects of stochastic spiking neurons such as the non-stationary population response to rapidly changing stimuli. Here, we derive low-dimensional firing-rate models for homogeneous populations of general renewal-type neurons, including integrate-and-fire models driven by white noise. Renewal models account for neuronal refractoriness and spike synchronization dynamics. The derivation is based on an eigenmode expansion of the associated refractory density equation, which generalizes previous spectral methods for Fokker-Planck equations to arbitrary renewal models. We find a simple relation between the eigenvalues, which determine the characteristic time scales of the firing rate dynamics, and the Laplace transform of the interspike interval density or the survival function of the renewal process. Analytical expressions for the Laplace transforms are readily available for many renewal models including the leaky integrate-and-fire model. Retaining only the first eigenmode yields already an adequate low-dimensional approximation of the firing-rate dynamics that captures spike synchronization effects and fast transient dynamics at stimulus onset. We explicitly demonstrate the validity of our model for a large homogeneous population of Poisson neurons with absolute refractoriness, and other renewal models that admit an explicit analytical calculation of the eigenvalues. The here presented eigenmode expansion provides a systematic framework for novel firing-rate models in computational neuroscience based on spiking neuron dynamics with refractoriness.
The dominant modeling framework for understanding cortical computations are heuristic firing rate models. Despite their success, these models fall short to capture spike synchronization effects, to link to biophysical parameters and to describe finit
We derive analytical formulae for the firing rate of integrate-and-fire neurons endowed with realistic synaptic dynamics. In particular we include the possibility of multiple synaptic inputs as well as the effect of an absolute refractory period into the description.
Finite-sized populations of spiking elements are fundamental to brain function, but also used in many areas of physics. Here we present a theory of the dynamics of finite-sized populations of spiking units, based on a quasi-renewal description of neu
Fast-spiking (FS) interneurons in the brain are self-innervated by powerful inhibitory GABAergic autaptic connections. By computational modelling, we investigate how autaptic inhibition regulates the firing response of such interneurons. Our results
Neural population equations such as neural mass or field models are widely used to study brain activity on a large scale. However, the relation of these models to the properties of single neurons is unclear. Here we derive an equation for several int