ﻻ يوجد ملخص باللغة العربية
We present new numerical relativity results of neutron star mergers with chirp mass $1.188M_odot$ and mass ratios $q=1.67$ and $q=1.8$ using finite-temperature equations of state (EOS), approximate neutrino transport and a subgrid model for magnetohydrodynamics-induced turbulent viscosity. The EOS are compatible with nuclear and astrophysical constraints and include a new microphysical model derived from ab-initio calculations based on the Brueckner-Hartree-Fock approach. We report for the first time evidence for accretion-induced prompt collapse in high-mass-ratio mergers, in which the tidal disruption of the companion and its accretion onto the primary star determine prompt black hole formation. As a result of the tidal disruption, an accretion disc of neutron-rich and cold matter forms with baryon masses ${sim}0.15M_odot$, and it is significantly heavier than the remnant discs in equal-masses prompt collapse mergers. Massive dynamical ejecta of order ${sim}0.01M_odot$ also originate from the tidal disruption. They are neutron rich and expand from the orbital plane with a crescent-like geometry. Consequently, bright, red and temporally extended kilonova emission is predicted from these mergers. Our results show that prompt black hole mergers can power bright electromagnetic counterparts for high-mass-ratio binaries, and that the binary mass ratio can be in principle constrained from multimessenger observations.
This study addresses the collapse behavior of neutron star (NS) mergers expressed through the binary threshold mass M_thr for prompt black hole (BH) formation, which we determine by relativistic hydrodynamical simulations for 40 equation of state (Eo
The detections of gravitational waves (GWs) from binary neutron star (BNS) systems and neutron star--black hole (NSBH) systems provide new insights into dense matter properties in extreme conditions and associated high-energy astrophysical processes.
Detection of electromagnetic counterparts of gravitational wave (GW) sources is important to unveil the nature of compact binary coalescences. We perform three-dimensional, time-dependent, multi-frequency radiative transfer simulations for radioactiv
We present fitting formulae for the dynamical ejecta properties and remnant disk masses from a large sample of numerical relativity simulations. The considered data include some of the latest simulations with microphysical nuclear equations of state
In this work we study the formation of the first two black hole-neutron star (BHNS) mergers detected in gravitational waves (GW200115 and GW200105) from massive stars in wide isolated binary systems - the isolated binary evolution channel. We use 560