ﻻ يوجد ملخص باللغة العربية
The study of topological superconductivity is largely based on the analysis of mean-field Hamiltonians that violate particle number conservation and have only short-range interactions. Although this approach has been very successful, it is not clear that it captures the topological properties of real superconductors, which are described by number-conserving Hamiltonians with long-range interactions. To address this issue, we study topological superconductivity directly in the number-conserving setting. We focus on a diagnostic for topological superconductivity that compares the fermion parity $mathcal{P}$ of the ground state of a system in a ring geometry and in the presence of zero vs. $Phi_{text{sc}}=frac{h}{2e} equiv pi$ flux of an external magnetic field. A version of this diagnostic exists in any dimension and provides a $mathbb{Z}_2$ invariant $ u=mathcal{P}_0mathcal{P}_{pi}$ for topological superconductivity. In this paper we prove that the mean-field approximation correctly predicts the value of $ u$ for a large family of number-conserving models of spinless superconductors. Our result applies directly to the cases of greatest physical interest, including $p$-wave and $p_x+ip_y$ superconductors in one and two dimensions, and gives strong evidence for the validity of the mean-field approximation in the study of (at least some aspects of) topological superconductivity.
We study the intrinsic superconductivity in a dissipative Floquet electronic system in the presence of attractive interactions. Based on the functional Keldysh theory beyond the mean-field treatment, we find that the system shows a time-periodic boso
We propose a topological field theory for a spin-less two-dimensional chiral superconductor that contains fundamental Majorana fields. Due to a fermionic gauge symmetry, the Majorana modes survive as dynamical degrees of freedom only at magnetic vort
Motivated by the recently observed phenomenon of topology trivialization of potential energy landscapes (PELs) for several statistical mechanics models, we perform a numerical study of the finite size $2$-spin spherical model using both numerical pol
We study quantum geometric contributions to the Berezinskii-Kosterlitz-Thouless (BKT) transition temperature, $T_{mathrm{BKT}}$, in the presence of fluctuations beyond BCS theory. Because quantum geometric effects become progressively more important
We study the topology and symmetry of surface Majorana arcs in superconductors with nonunitary cyclic pairing. Cyclic $p$-wave pairing may be realized in a cubic or tetrahedral crystal, while it is a candidate for the interior $^3P_2$ superfluids of