ترغب بنشر مسار تعليمي؟ اضغط هنا

Geodesic Distance Field-based Curved Layer Volume Decomposition for Multi-Axis Support-free Printing

76   0   0.0 ( 0 )
 نشر من قبل Yamin Li
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper presents a new curved layer volume decomposition method for multi-axis support-free printing of freeform solid parts. Given a solid model to be printed that is represented as a tetrahedral mesh, we first establish a geodesic distance field embedded on the mesh, whose value at any vertex is the geodesic distance to the base of the model. Next, the model is naturally decomposed into curved layers by interpolating a number of iso-geodesic distance surfaces (IGDSs). These IGDSs morph from bottom-up in an intrinsic and smooth way owing to the nature of geodesics, which will be used as the curved printing layers that are friendly to multi-axis printing. In addition, to cater to the collision-free requirement and to improve the printing efficiency, we also propose a printing sequence optimization algorithm for determining the printing order of the IGDSs, which helps reduce the air-move path length. Ample experiments in both computer simulation and physical printing are performed, and the experimental results confirm the advantages of our method.



قيم البحث

اقرأ أيضاً

167 - Yamin Li , Kai Tang , Dong He 2020
In additive manufacturing, infill structures are commonly used to reduce the weight and cost of a solid part. Currently, most infill structure generation methods are based on the conventional 2.5-axis printing configuration, which, although able to s atisfy the self-supporting condition on the infills, suffer from the well-known stair-case effect on the finished surface and the need of extensive support for overhang features. In this paper, based on the emerging continuous multi-axis printing configuration, we present a new lattice infill structure generation algorithm, which is able to achieve both the self-supporting condition for the infills and the support-free requirement at the boundary surface of the part. The algorithm critically relies on the use of three mutually orthogonal geodesic distance fields that are embedded in the tetrahedral mesh of the solid model. The intersection between the iso-geodesic distance surfaces of these three geodesic distance fields naturally forms the desired lattice of infill structure, while the density of the infills can be conveniently controlled by adjusting the iso-values. The lattice infill pattern in each curved slicing layer is trimmed to conform to an Eulerian graph so to generate a continuous printing path, which can effectively reduce the nozzle retractions during the printing process. In addition, to cater to the collision-free requirement and to improve the printing efficiency, we also propose a printing sequence optimization algorithm for determining a collision-free order of printing of the connected lattice infills, which seeks to reduce the air-move length of the nozzle. Ample experiments in both computer simulation and physical printing are performed, and the results give a preliminary confirmation of the advantages of our methodology.
In this paper, we propose a parallel and scalable approach for geodesic distance computation on triangle meshes. Our key observation is that the recovery of geodesic distance with the heat method from [Crane et al. 2013] can be reformulated as optimi zation of its gradients subject to integrability, which can be solved using an efficient first-order method that requires no linear system solving and converges quickly. Afterward, the geodesic distance is efficiently recovered by parallel integration of the optimized gradients in breadth-first order. Moreover, we employ a similar breadth-first strategy to derive a parallel Gauss-Seidel solver for the diffusion step in the heat method. To further lower the memory consumption from gradient optimization on faces, we also propose a formulation that optimizes the projected gradients on edges, which reduces the memory footprint by about 50%. Our approach is trivially parallelizable, with a low memory footprint that grows linearly with respect to the model size. This makes it particularly suitable for handling large models. Experimental results show that it can efficiently compute geodesic distance on meshes with more than 200 million vertices on a desktop PC with 128GB RAM, outperforming the original heat method and other state-of-the-art geodesic distance solvers.
In this paper, we develop a novel method for fast geodesic distance queries. The key idea is to embed the mesh into a high-dimensional space, such that the Euclidean distance in the high-dimensional space can induce the geodesic distance in the origi nal manifold surface. However, directly solving the high-dimensional embedding problem is not feasible due to the large number of variables and the fact that the embedding problem is highly nonlinear. We overcome the challenges with two novel ideas. First, instead of taking all vertices as variables, we embed only the saddle vertices, which greatly reduces the problem complexity. We then compute a local embedding for each non-saddle vertex. Second, to reduce the large approximation error resulting from the purely Euclidean embedding, we propose a cascaded optimization approach that repeatedly introduces additional embedding coordinates with a non-Euclidean function to reduce the approximation residual. Using the precomputation data, our approach can determine the geodesic distance between any two vertices in near-constant time. Computational testing results show that our method is more desirable than previous geodesic distance queries methods.
We propose a novel approach for performing convolution of signals on curved surfaces and show its utility in a variety of geometric deep learning applications. Key to our construction is the notion of directional functions defined on the surface, whi ch extend the classic real-valued signals and which can be naturally convolved with with real-valued template functions. As a result, rather than trying to fix a canonical orientation or only keeping the maximal response across all alignments of a 2D template at every point of the surface, as done in previous works, we show how information across all rotations can be kept across different layers of the neural network. Our construction, which we call multi-directional geodesic convolution, or directional convolution for short, allows, in particular, to propagate and relate directional information across layers and thus different regions on the shape. We first define directional convolution in the continuous setting, prove its key properties and then show how it can be implemented in practice, for shapes represented as triangle meshes. We evaluate directional convolution in a wide variety of learning scenarios ranging from classification of signals on surfaces, to shape segmentation and shape matching, where we show a significant improvement over several baselines.
We extend the formulation of position-based rods to include elastic volumetric deformations. We achieve this by introducing an additional degree of freedom per vertex -- isotropic scale (and its velocity). Including scale enriches the space of possib le deformations, allowing the simulation of volumetric effects, such as a reduction in cross-sectional area when a rod is stretched. We rigorously derive the continuous formulation of its elastic energy potentials, and hence its associated position-based dynamics (PBD) updates to realize this model, enabling the simulation of up to 26000 DOFs at 140 Hz in our GPU implementation. We further show how rods can provide a compact alternative to tetrahedral meshes for the representation of complex muscle deformations, as well as providing a convenient representation for collision detection. This is achieved by modeling a muscle as a bundle of rods, for which we also introduce a technique to automatically convert a muscle surface mesh into a rods-bundle. Finally, we show how rods and/or bundles can be skinned to a surface mesh to drive its deformation, resulting in an alternative to cages for real-time volumetric deformation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا