ﻻ يوجد ملخص باللغة العربية
A complete one-loop matching calculation for real singlet scalar extensions of the Standard Model to the Standard Model effective field theory (SMEFT) of dimension-six operators is presented. We compare our analytic results obtained by using Feynman diagrams to the expressions derived in the literature by a combination of the universal one-loop effective action (UOLEA) approach and Feynman calculus. After identifying contributions that have been overlooked in the existing calculations, we find that the pure diagrammatic approach and the mixed method lead to identical results. We highlight some of the subtleties involved in computing one-loop matching corrections in SMEFT.
In this paper we present the complete one-loop matching conditions, up to dimension-six operators of the Standard Model effective field theory, resulting by integrating out the two scalar leptoquarks $S_{1}$ and $S_{3}$. This allows a phenomenologica
In this paper, we propose a new method for evaluating scalar one-loop Feynman integrals in generalized D-dimension. The calculations play an important building block for two-loop and higher-loop corrections to the processes at future colliders such a
For loop integrals, the standard method is reduction. A well-known reduction method for one-loop integrals is the Passarino-Veltman reduction. Inspired by the recent paper [1] where the tadpole reduction coefficients have been solved, in this paper w
We present a diagrammatic formulation of recently-revived covariant functional approaches to one-loop matching from an ultraviolet (UV) theory to a low-energy effective field theory. Various terms following from a covariant derivative expansion (CDE)
Gauge singlet extensions of the Standard Model (SM) scalar sector may help remedy its theoretical and phenomenological shortcomings while solving outstanding problems in cosmology. Depending on the symmetries of the scalar potential, such extensions