ترغب بنشر مسار تعليمي؟ اضغط هنا

Full Counting Statistics of the momentum occupation numbers of the Tonks-Girardeau gas

69   0   0.0 ( 0 )
 نشر من قبل Mathias Albert
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We compute the fluctuations of the number of bosons with a given momentum for the Tonks-Girardeau gas at zero temperature. We show that correlations between opposite momenta, which is an important fingerprint of long range order in weakly interacting Bose systems, are suppressed and that the full distribution of the number of bosons with non zero momentum is exponential. The distribution of the quasi-condensate is however quasi Gaussian. Experimental relevance of our findings for recent cold atoms experiments are discussed.

قيم البحث

اقرأ أيضاً

86 - M.D. Girardeau 2010
A harmonically trapped ultracold 1D spin-1 Bose gas with strongly repulsive or attractive 1D even-wave interactions induced by a 3D Feshbach resonance is studied. The exact ground state, a hybrid of Tonks-Girardeau (TG) and ideal Fermi gases, is cons tructed in the TG limit of infinite even-wave repulsion by a spinor Fermi-Bose mapping to a spinless ideal Fermi gas. It is then shown that in the limit of infinite even-wave attraction this same state remains an exact many-body eigenstate, now highly excited relative to the collapsed generalized McGuire cluster ground state, showing that the hybrid TG state is completely stable against collapse to this cluster ground state under a sudden switch from infinite repulsion to infinite attraction. It is shown to be the TG limit of a hybrid super Tonks-Girardeau (STG) state which is metastable under a sudden switch from finite but very strong repulsion to finite but very strong attraction. It should be possible to create it experimentally by a sudden switch from strongly repulsive to strongly attractive interaction, as in the recent Innsbruck experiment on a spin-polarized bosonic STG gas. In the case of strong attraction there should also exist another STG state of much lower energy, consisting of strongly bound dimers, a bosonic analog of a recently predicted STG gas which is an ultracold gas of strongly bound bosonic dimers of fermionic atoms, but it is shown that this STG state cannot be created by such a switch from strong repulsion to strong attraction.
We study the local correlations in the super Tonks-Girardeau gas, a highly excited, strongly correlated state obtained in quasi one-dimensional Bose gases by tuning the scattering length to large negative values using a confinement-induced resonance. Exploiting a connection with a relativistic field theory, we obtain results for the two-body and three-body local correlators at zero and finite temperature. At zero temperature our result for the three-body correlator agrees with the extension of the results of Cheianov et al. [Phys. Rev. A 73, 051604(R) (2006)], obtained for the ground-state of the repulsive Lieb-Liniger gas, to the super Tonks-Girardeau state. At finite temperature we obtain that the three-body correlator has a weak dependence on the temperature up to the degeneracy temperature. We also find that for temperatures larger than the degeneracy temperature the values of the three-body correlator for the super Tonks-Girardeau gas and the corresponding repulsive Lieb-Liniger gas are rather similar even for relatively small couplings.
In this article, we consider the monopole excitations of the harmonically trapped Bose gas in the vicinity of the Tonks-Girardeau limit. Using Girardeaus Fermi-Bose duality and subsequently an effective fermion-fermion odd-wave interaction, we obtain the dominant correction to the scale-invariance-protected value of the excitation frequency, for microscopically small excitation amplitudes. We produce a series of diffusion Monte Carlo results that confirm our analytic prediction for three particles. And less expectedly, our result stands in excellent agreement with the result of a hydrodynamic simulation of the microscopically large but macroscopically small excitations.
Recent theoretical and experimental results demonstrate a close connection between the super Tonks-Girardeau (sTG) gas and a 1D hard sphere Bose (HSB) gas with hard sphere diameter nearly equal to the 1D scattering length $a_{1D}$ of the sTG gas, a h ighly excited gas-like state with nodes only at interparticle separations $|x_{jell}|=x_{node}approx a_{1D}$. It is shown herein that when the coupling constant $g_B$ in the Lieb-Liniger interaction $g_Bdelta(x_{jell})$ is negative and $|x_{12}|ge x_{node}$, the sTG and HSB wave functions for $N=2$ particles are not merely similar, but identical; the only difference between the sTG and HSB wave functions is that the sTG wave function allows a small penetration into the region $|x_{12}|<x_{node}$, whereas for a HSB gas with hard sphere diameter $a_{h.s.}=x_{node}$, the HSB wave function vanishes when all $|x_{12}|<a_{h.s.}$. Arguments are given suggesting that the same theorem holds also for $N>2$. The sTG and HSB wave functions for N=2 are given exactly in terms of a parabolic cylinder function, and for $Nge 2$, $x_{node}$ is given accurately by a simple parabola. The metastability of the sTG phase generated by a sudden change of the coupling constant from large positive to large negative values is explained in terms of the very small overlap between the ground state of the Tonks-Girardeau gas and collapsed cluster states.
We apply the theory of Quantum Generalized Hydrodynamics (QGHD) introduced in [Phys. Rev.Lett. 124, 140603 (2020)] to derive asymptotically exact results for the density fluctuations and theentanglement entropy of a one-dimensional trapped Bose gas i n the Tonks-Girardeau (TG) or hard-core limit, after a trap quench from a double well to a single well. On the analytical side, thequadratic nature of the theory of QGHD is complemented with the emerging conformal invarianceat the TG point to fix the universal part of those quantities. Moreover, the well-known mapping ofhard-core bosons to free fermions, allows to use a generalized form of the Fisher-Hartwig conjectureto fix the non-trivial spacetime dependence of the ultraviolet cutoff in the entanglement entropy. Thefree nature of the TG gas also allows for more accurate results on the numerical side, where a highernumber of particles as compared to the interacting case can be simulated. The agreement betweenanalytical and numerical predictions is extremely good. For the density fluctuations, however, onehas to average out large Friedel oscillations present in the numerics to recover such agreement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا