ﻻ يوجد ملخص باللغة العربية
It is shown that adding hair like electric charge or angular momentum to the black hole decreases the amount of entropy emission. This motivates us to study the emission rate of entropy from black holes and conjecture a maximum limit (upper bound) on the rate of local entropy emission ($dot{S}$) for thermal systems in four dimensional space time and argue that this upper bound is $dot{S}simeq k_{B} sqrt{frac{c^5}{hbar G}}$. Also by considering R`{e}nyi entropy, it is shown that Bekenstein-Hawking entropy leads to a maximum limit for the rate of entropy emission. We also suggest an upper bound on the surface gravity of the black holes which is called Planck surface gravity. Finally we obtain a relation between maximum rate of entropy emission, Planck surface gravity and Planck temperature of black holes.
Two maximization problems of Renyi entropy rate are investigated: the maximization over all stochastic processes whose marginals satisfy a linear constraint, and the Burg-like maximization over all stochastic processes whose autocovariance function b
Discrete formulations of (quantum) gravity in four spacetime dimensions build space out of tetrahedra. We investigate a statistical mechanical system of tetrahedra from a many-body point of view based on non-local, combinatorial gluing constraints th
We consider a static self-gravitating perfect fluid system in Lovelock gravity theory. For a spacial region on the hypersurface orthogonal to static Killing vector, by the Tolmans law of temperature, the assumption of a fixed total particle number in
We consider a static self-gravitating system consisting of perfect fluid with isometries of an $(n-2)$-dimensional maximally symmetric space in Lovelock gravity theory. A straightforward analysis of the time-time component of the equations of motion
In this work, we analyzed the effect of different prescriptions of the IR cutoffs, namely the Hubble horizon cutoff, particle horizon cutoff, Granda and Oliveros horizon cut off, and the Ricci horizon cutoff on the growth rate of clustering for the T