ترغب بنشر مسار تعليمي؟ اضغط هنا

Actuator Security Index for Structured Systems

163   0   0.0 ( 0 )
 نشر من قبل Sebin Gracy
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Given a network with the set of vulnerable actuators (and sensors), the security index of an actuator equals the minimum number of sensors and actuators that needs to be compromised so as to conduct a perfectly undetectable attack using the said actuator. This paper deals with the problem of computing actuator security indices for discrete-time LTI network systems. Firstly, we show that, under a structured systems framework, the actuator security index is generic. Thereafter, we provide graph-theoretic conditions for computing the structural actuator security index. The said conditions are in terms of existence of linkings on appropriately-defined directed (sub)graphs. Based on these conditions, we present an algorithm for computing the structural index.

قيم البحث

اقرأ أيضاً

This paper defines a security injection region (SIR) to guarantee reliable operation of water distribution systems (WDS) under extreme conditions. The model of WDSs is highly nonlinear and nonconvex. Understanding the accurate SIRs of WDSs involves t he analysis of nonlinear constraints, which is computationally expensive. To reduce the computational burden, this paper first investigates the convexity of the SIR of WDSs under certain conditions. Then, an algorithm based on a monotone inner polytope sequence is proposed to effectively and accurately determine these SIRs. The proposed algorithm estimates a sequence of inner polytopes that converge to the whole convex region. Each polytope adds a new area to the SIR. The algorithm is validated on two different WDSs, and the conclusion is drawn. The computational study shows this method is applicable and fast for both systems.
244 - Shuai Sun , Yilin Mo 2021
Due to the wide application of average consensus algorithm, its security and privacy problems have attracted great attention. In this paper, we consider the system threatened by a set of unknown agents that are both malicious and curious, who add add itional input signals to the system in order to perturb the final consensus value or prevent consensus, and try to infer the initial state of other agents. At the same time, we design a privacy-preserving average consensus algorithm equipped with an attack detector with a time-varying exponentially decreasing threshold for every benign agent, which can guarantee the initial state privacy of every benign agent, under mild conditions. The attack detector will trigger an alarm if it detects the presence of malicious attackers. An upper bound of false alarm rate in the absence of malicious attackers and the necessary and sufficient condition for there is no undetectable input by the attack detector in the system are given. Specifically, we show that under this condition, the system can achieve asymptotic consensus almost surely when no alarm is triggered from beginning to end, and an upper bound of convergence rate and some quantitative estimates about the error of final consensus value are given. Finally, numerical case is used to illustrate the effectiveness of some theoretical results.
We consider a security setting in which the Cyber-Physical System (CPS) is composed of subnetworks where each subnetwork is under ownership of one defender. Such CPS can be represented by an attack graph where the defenders are required to invest (su bject to a budget constraint) on the graphs edges in order to protect their critical assets (where each defenders critical asset has a certain value to the defender if compromised). We model such CPS using Hybrid Input-Output Automaton (HIOA) where each subnetwork is represented by a HIOA module. We first establish the building blocks needed in our setting. We then present our model that characterizes the continuous time evolution of the investments and discrete transitions between different states (where each state represents different condition and/or perturbation) within the system. Finally, we provide a real-world CPS example to validate our modeling.
We present a convex optimization to reduce the impact of sensor falsification attacks in linear time invariant systems controlled by observer-based feedback. We accomplish this by finding optimal observer and controller gain matrices that minimize th e size of the reachable set of attack-induced states. To avoid trivial solutions, we integrate a covariance-based $|H|_2$ closed-loop performance constraint, for which we develop a novel linearization for this typically nonlinear, non-convex problem. We demonstrate the effectiveness of this linear matrix inequality framework through a numerical case study.
56 - Z. Feng , G. Hu 2020
This paper addresses a formation tracking problem for nonlinear multi-agent systems with time-varying actuator faults, in which only a subset of agents has access to the leaders information over the directed leader-follower network with a spanning tr ee. Both the amplitudes and signs of control coefficients induced by actuator faults are unknown and time-varying. The aforementioned setting improves the practical relevance of the problem to be investigated, and meanwhile, it poses technical challenges to distributed controller design and asymptotic stability analysis. By introducing a distributed estimation and control framework, a novel distributed control law based on a Nussbaum gain technique is developed to achieve robust fault-tolerant formation tracking for heterogeneous nonlinear multi-agent systems with time-varying actuator faults. It can be proved that the asymptotic convergence is guaranteed. In addition, the proposed approach is applied to task-space cooperative tracking of networked manipulators irrespective of the uncertain kinematics, dynamics, and actuator faults. Numerical simulation results are presented to verify the effectiveness of the proposed designs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا