ﻻ يوجد ملخص باللغة العربية
Researchers have shown that the predictions of a convolutional neural network (CNN) for an image set can be severely distorted by one single image-agnostic perturbation, or universal perturbation, usually with an empirically fixed threshold in the spatial domain to restrict its perceivability. However, by considering the human perception, we propose to adopt JND thresholds to guide the perceivability of universal adversarial perturbations. Based on this, we propose a frequency-tuned universal attack method to compute universal perturbations and show that our method can realize a good balance between perceivability and effectiveness in terms of fooling rate by adapting the perturbations to the local frequency content. Compared with existing universal adversarial attack techniques, our frequency-tuned attack method can achieve cutting-edge quantitative results. We demonstrate that our approach can significantly improve the performance of the baseline on both white-box and black-box attacks.
Given the outstanding progress that convolutional neural networks (CNNs) have made on natural image classification and object recognition problems, it is shown that deep learning methods can achieve very good recognition performance on many texture d
Machine learning models are known to be vulnerable to adversarial attacks, namely perturbations of the data that lead to wrong predictions despite being imperceptible. However, the existence of universal attacks (i.e., unique perturbations that trans
Recent work shows that deep neural networks are vulnerable to adversarial examples. Much work studies adversarial example generation, while very little work focuses on more critical adversarial defense. Existing adversarial detection methods usually
Standard adversarial attacks change the predicted class label of a selected image by adding specially tailored small perturbations to its pixels. In contrast, a universal perturbation is an update that can be added to any image in a broad class of im
Given a state-of-the-art deep neural network classifier, we show the existence of a universal (image-agnostic) and very small perturbation vector that causes natural images to be misclassified with high probability. We propose a systematic algorithm