ترغب بنشر مسار تعليمي؟ اضغط هنا

Fluctuations in galactic bar parameters due to bar-spiral interaction

74   0   0.0 ( 0 )
 نشر من قبل Ivan Minchev
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the late-time evolution of the central regions of two Milky Way-like simulations of galaxies formed in a cosmological context, one hosting a fast bar and the other a slow one. We find that bar length, R_b, measurements fluctuate on a dynamical timescale by up to 100%, depending on the spiral structure strength and measurement threshold. The bar amplitude oscillates by about 15%, correlating with R_b. The Tremaine-Weinberg-method estimates of the bars instantaneous pattern speeds show variations around the mean of up to ~20%, typically anti-correlating with the bar length and strength. Through power spectrum analyses, we establish that these bar pulsations, with a period in the range ~60-200 Myr, result from its interaction with multiple spiral modes, which are coupled with the bar. Because of the presence of odd spiral modes, the two bar halves typically do not connect at exactly the same time to a spiral arm, and their individual lengths can be significantly offset. We estimated that in about 50% of bar measurements in Milky Way-mass external galaxies, the bar lengths of SBab type galaxies are overestimated by ~15% and those of SBbc types by ~55%. Consequently, bars longer than their corotation radius reported in the literature, dubbed ultra-fast bars, may simply correspond to the largest biases. Given that the Scutum-Centaurus arm is likely connected to the near half of the Milky Way bar, recent direct measurements may be overestimating its length by 1-1.5 kpc, while its present pattern speed may be 5-10 km/s/kpc smaller than its time-averaged value.

قيم البحث

اقرأ أيضاً

Aims: To gain insight into the expected gas dynamics at the interface of the Galactic bar and spiral arms in our own Milky Way galaxy, we examine as an extragalactic counterpart the evidence for multiple distinct velocity components in the cold, dens e molecular gas populating a comparable region at the end of the bar in the nearby galaxy NGC3627. Methods: We assemble a high resolution view of molecular gas kinematics traced by CO(2-1) emission and extract line-of-sight velocity profiles from regions of high and low gas velocity dispersion. Results: The high velocity dispersions arise with often double-peaked or multiple line-profiles. We compare the centroids of the different velocity components to expectations based on orbital dynamics in the presence of bar and spiral potential perturbations. A model of the region as the interface of two gas-populated orbits families supporting the bar and the independently rotating spiral arms provides an overall good match to the data. An extent of the bar to the corotation radius of the galaxy is favored. Conclusions: Using NGC3627 as an extragalactic example, we expect situations like this to favor strong star formation events such as observed in our own Milky Way since gas can pile up at the crossings between the orbit families. The relative motions of the material following these orbits is likely even more important for the build up of high density in the region. The surface densities in NGC3627 are also so high that shear at the bar end is unlikely to significantly weaken the star formation activity. We speculate that scenarios in which the bar and spiral rotate at two different pattern speeds may be the most favorable for intense star formation at such interfaces.
The Milky Ways bar dominates the orbits of stars and the flow of cold gas in the inner Galaxy, and is therefore of major importance for Milky Way dynamical studies in the Gaia era. Here we discuss the pronounced peanut shape of the Galactic bulge tha t has resulted from recent star count analysis, in particular from the VVV survey. We also discuss the question whether the Milky Way has an inner disky pseudo-bulge, and show preliminary evidence for a continuous transition in vertical scale-height from the peanut bulge-bar to the planar long bar.
We use the NewHorizon simulation to study the redshift evolution of bar properties and fractions within galaxies in the stellar masses range $M_{star} = 10^{7.25} - 10^{11.4} rm{M}_{odot}$ over the redshift range $z = 0.25 - 1.3$. We select disc gal axies using stellar kinematics as a proxy for galaxy morphology. We employ two different automated bar detection methods, coupled with visual inspection, resulting in observable bar fractions of $f_{rm bar} = 0.070_{{-0.012}}^{{+0.018}}$ at $zsim$ 1.3, decreasing to $f_{rm bar} = 0.011_{{-0.003}}^{{+0.014}}$ at $zsim$ 0.25. Only one galaxy is visually confirmed as strongly barred in our sample. This bar is hosted by the most massive disk and only survives from $z=1.3$ down to $z=0.7$. Such a low bar fraction, in particular amongst Milky Way-like progenitors, highlights a missing bars problem, shared by literally all cosmological simulations with spatial resolution $<$100 pc to date. The analysis of linear growth rates, rotation curves and derived summary statistics of the stellar, gas and dark matter components suggest that galaxies with stellar masses below $10^{9.5}-10^{10} rm{M}_{odot}$ in NewHorizon appear to be too dominated by dark matter to bar, while more massive galaxies typically have formed large bulges that prevent bar persistence at low redshift. This investigation confirms that the evolution of the bar fraction puts stringent constraints on the assembly history of baryons and dark matter onto galaxies.
Spiral arms that emerge from the ends of a galactic bar are important in interpreting observations of our and external galaxies. It is therefore important to understand the physical mechanism that causes them. We find that these spiral arms can be un derstood as kinematic density waves generated by librations around underlying ballistic closed orbits. This is even true in the case of a strong bar, provided the librations are around the appropriate closed orbits and not around the circular orbits that form the basis of the epicycle approximation. An important consequence is that it is a potentials orbital structure that determines whether a bar should be classified as weak or strong, and not crude estimates of the potentials deviation from axisymmetry.
Stellar bars and spiral arms co-exist and co-evolve in most disc galaxies in the local Universe. However, the physical nature of this interaction remains a matter of debate. In this work, we present a set of numerical simulations based on isolated ga lactic models aimed to explore how the bar properties affect the induced spiral structure. We cover a large combination of bar properties, including the bar length, axial ratio, mass and rotation rate. We use three galactic models describing galaxies with rising, flat and declining rotation curves. We found that the pitch angle best correlates with the bar pattern speed and the spiral amplitude with the bar quadrupole moment. Our results suggest that galaxies with declining rotation curves are the most efficient forming grand design spiral structure, evidenced by spirals with larger amplitude and pitch angle. We also test the effects of the velocity ellipsoid in a subset of simulations. We found that as we increase the radial anisotropy, spirals increase their pitch angle but become less coherent with smaller amplitude.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا