ﻻ يوجد ملخص باللغة العربية
1. Joint Species Distribution models (JSDMs) explain spatial variation in community composition by contributions of the environment, biotic associations, and possibly spatially structured residual covariance. They show great promise as a general analytical framework for community ecology and macroecology, but current JSDMs, even when approximated by latent variables, scale poorly on large datasets, limiting their usefulness for currently emerging big (e.g., metabarcoding and metagenomics) community datasets. 2. Here, we present a novel, more scalable JSDM (sjSDM) that circumvents the need to use latent variables by using a Monte-Carlo integration of the joint JSDM likelihood and allows flexible elastic net regularization on all model components. We implemented sjSDM in PyTorch, a modern machine learning framework that can make use of CPU and GPU calculations. Using simulated communities with known species-species associations and different number of species and sites, we compare sjSDM with state-of-the-art JSDM implementations to determine computational runtimes and accuracy of the inferred species-species and species-environmental associations. 3. We find that sjSDM is orders of magnitude faster than existing JSDM algorithms (even when run on the CPU) and can be scaled to very large datasets. Despite the dramatically improved speed, sjSDM produces more accurate estimates of species association structures than alternative JSDM implementations. We demonstrate the applicability of sjSDM to big community data using eDNA case study with thousands of fungi operational taxonomic units (OTU). 4. Our sjSDM approach makes the analysis of JSDMs to large community datasets with hundreds or thousands of species possible, substantially extending the applicability of JSDMs in ecology. We provide our method in an R package to facilitate its applicability for practical data analysis.
Motivation: We introduce TRONCO (TRanslational ONCOlogy), an open-source R package that implements the state-of-the-art algorithms for the inference of cancer progression models from (epi)genomic mutational profiles. TRONCO can be used to extract pop
We investigate the rates of drug resistance acquisition in a natural population using molecular epidemiological data from Bolivia. First, we study the rate of direct acquisition of double resistance from the double sensitive state within patients and
Dangerous damage to mitochondrial DNA (mtDNA) can be ameliorated during mammalian development through a highly debated mechanism called the mtDNA bottleneck. Uncertainty surrounding this process limits our ability to address inherited mtDNA diseases.
Big imaging data is becoming more prominent in brain sciences across spatiotemporal scales and phylogenies. We have developed a computational ecosystem that enables storage, visualization, and analysis of these data in the cloud, thusfar spanning 20+
Human associated microbial communities exert tremendous influence over human health and disease. With modern metagenomic sequencing methods it is possible to follow the relative abundance of microbes in a community over time. These microbial communit