ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological Theory for Perfect Metasurface Isolators

48   0   0.0 ( 0 )
 نشر من قبل Kin Hung Fung
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce topological theory of perfect isolation: perfect transmission from one side and total reflection from another side simultaneously. The theory provides an efficient approach for determining whether such a perfect isolation point exists within a finite parameter space. Herein, we demonstrate the theory using an example of a Lorentz non-reciprocal metasurface composed of dimer unit cells. Our theory also suggests that perfect isolation points can annihilate each other through the coalescence of opposite topological charges. Our findings could lead to novel designs for high-performance optical isolators.

قيم البحث

اقرأ أيضاً

Optical properties of a metasurface which can be considered a monolayer of two classical uniaxial metamaterials, parallel-plate and nanorod arrays, are investigated. It is shown that such metasurface acts as an ultimately thin sub-50 nm wave plate. T his is achieved via an interplay of epsilon-near-zero and epsilon-near-pole behavior along different axes in the plane of the metasurface allowing for extremely rapid phase difference accumulation in very thin metasurface layers. These effects are shown to not be disrupted by non-locality and can be applied to the design of ultrathin wave plates, Pancharatnam-Berry phase optical elements and plasmon-carrying optical torque wrench devices.
Freeform optics aims to expand the toolkit of optical elements by allowing for more complex phase geometries beyond rotational symmetry. Complex, asymmetric curvatures are employed to enhance the performance of optical components while minimizing the ir weight and size. Unfortunately, these asymmetric forms are often difficult to manufacture at the nanoscale with current technologies. Metasurfaces are planar sub-wavelength structures that can control the phase, amplitude, and polarization of incident light, and can thereby mimic complex geometric curvatures on a flat, wavelength-scale thick surface. We present a methodology for designing analogues of freeform optics using a low contrast dielectric metasurface platform for operation at visible wavelengths. We demonstrate a cubic phase plate with a point spread function exhibiting enhanced depth of field over 300 {mu}m along the optical axis with potential for performing metasurface-based white light imaging, and an Alvarez lens with a tunable focal length range of over 2.5 mm with 100 {mu}m of total mechanical displacement. The adaptation of freeform optics to a sub-wavelength metasurface platform allows for the ultimate miniaturization of optical components and offers a scalable route toward implementing near-arbitrary geometric curvatures in nanophotonics.
The incorporation of materials with controllable electromagnetic constitutive parameters allows the conceptualization and realization of controllable metasurfaces. With the aim of formulating and investigating a tricontrollable metasurface for effici ently absorbing terahertz radiation, we adopted a pixel-based approach in which the meta-atoms are biperiodic assemblies of discrete pixels. We patched some pixels with indium antimonide (InSb) and some with graphene, leaving the others unpatched. The bottom of each meta-atom was taken to comprise a metal-backed substrate of silicon nitride. The InSb-patched pixels facilitate the thermal and magnetic control modalities, whereas the graphene-patched pixels facilitate the electrical control modality. With proper configuration of patched and unpatched pixels and with proper selection of the patching material for each patched pixel, the absorptance spectrums of the pixelated metasurface were found to contain peak-shaped features with maximum absorptance exceeding 0.95, full-width-at-half-maximum bandwidth of less than 0.7~THz, and the maximum-absorptance frequency lying between 2~THz and 4~THz. The location of the maximum-absorptance frequency can be thermally, magnetically, and electrically controllable. The lack of rotational invariance of the optimal meta-atom adds mechanical rotation as the fourth control modality.
We introduce the concept of metasurface spatial processor, whose transmission is remotely and coherently controlled by the superposition of an incident wave and a control wave through the metasurface. The conceptual operation of this device is analog ous to both that of a transistor and a Mach-Zehnder interferometer, while offering much more diversity in terms of electromagnetic transformations. We demonstrate two metasurfaces, that perform the operation of electromagnetic switching and amplification.
Conventional imaging systems comprise large and expensive optical components which successively mitigate aberrations. Metasurface optics offers a route to miniaturize imaging systems by replacing bulky components with flat and compact implementations . The diffractive nature of these devices, however, induces severe chromatic aberrations and current multi-wavelength and narrowband achromatic metasurfaces cannot support full visible spectum imaging (400-700 nm). We combine principles of both computational imaging and metasurface optics to build a system with a single metalens of NA ~ 0.45 which generates in-focus images under white light illumination. Our metalens exhibits a spectrally invariant point spread function which enables computational reconstruction of captured images with a single digital filter. This work connects computational imaging and metasurface optics and demonstrates the capabilities of combining these disciplines by simultaneously reducing aberrations and downsizing imaging systems with simpler optics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا