ترغب بنشر مسار تعليمي؟ اضغط هنا

Resonance in the K2-19 system is at odds with its high reported eccentricities

118   0   0.0 ( 0 )
 نشر من قبل Antoine Petit C.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

K2-19 hosts a planetary system composed of two outer planets, b and c, with size of $7.0pm 0.2~R_oplus$ and $4.1pm0.2~R_oplus$ , and an inner planet, d, with a radius of $1.11pm 0.05 R_oplus$. A recent analysis of Transit-Timing Variations (TTVs) suggested b and c are close to but not in 3:2 mean motion resonance (MMR) because the classical resonant angles circulate. Such an architecture challenges our understanding of planet formation. Indeed, planet migration through the protoplanetary disk should lead to a capture into the MMR. Here, we show that the planets are in fact, locked into the 3:2 resonance despite circulation of the conventional resonant angles and aligned periapses. However, we show that such an orbital configuration cannot be maintained for more than a few hundred million years due to the tidal dissipation experienced by planet d. The tidal dissipation remains efficient because of a secular forcing of the innermost planet eccentricity by planets b and c. While the observations strongly rule out an orbital solution where the three planets are on close to circular orbits, it remains possible that a fourth planet is affecting the TTVs such that the four planet system is consistent with the tidal constraints.



قيم البحث

اقرأ أيضاً

This paper reports on the detailed characterisation of the K2-111 planetary system with K2, WASP, and ASAS-SN photometry as well as high-resolution spectroscopic data from HARPS-N and ESPRESSO. The host, K2-111, is confirmed to be a mildly evolved ($ log g=4.17$), iron-poor ([Fe/H]$=-0.46$), but alpha-enhanced ([$alpha$/Fe]$=0.27$), chromospherically quiet, very old thick disc G2 star. A global fit, performed by using PyORBIT shows that the transiting planet, K2-111b, orbits with a period $P_b=5.3518pm0.0004$ d, and has a planet radius of $1.82^{+0.11}_{-0.09}$ R$_oplus$ and a mass of $5.29^{+0.76}_{-0.77}$ M$_oplus$, resulting in a bulk density slightly lower than that of the Earth. The stellar chemical composition and the planet properties are consistent with K2-111b being a terrestrial planet with an iron core mass fraction lower than the Earth. We announce the existence of a second signal in the radial velocity data that we attribute to a non-transiting planet, K2-111c, with an orbital period of $15.6785pm 0.0064$ days, orbiting in near-3:1 mean-motion resonance with the transiting planet, and a minimum planet mass of $11.3pm1.1$ M$_oplus$. Both planet signals are independently detected in the HARPS-N and ESPRESSO data when fitted separately. There are potentially more planets in this resonant system, but more well-sampled data are required to confirm their presence and physical parameters.
K2-19 (EPIC201505350) is an interesting planetary system in which two transiting planets with radii ~ 7 $R_{Earth}$ (inner planet b) and ~ 4 $R_{Earth}$ (outer planet c) have orbits that are nearly in a 3:2 mean-motion resonance. Here, we present res ults of ground-based follow-up observations for the K2-19 planetary system. We have performed high-dispersion spectroscopy and high-contrast adaptive-optics imaging of the host star with the HDS and HiCIAO on the Subaru 8.2m telescope. We find that the host star is relatively old (>8 Gyr) late G-type star ($T_{eff}$ ~ 5350 K, $M_s$ ~ 0.9 $M_{Sun}$, and $R_{s}$ ~ 0.9 $R_{Sun}$). We do not find any contaminating faint objects near the host star which could be responsible for (or dilute) the transit signals. We have also conducted transit follow-up photometry for the inner planet with KeplerCam on the FLWO 1.2m telescope, TRAPPISTCAM on the TRAPPIST 0.6m telescope, and MuSCAT on the OAO 1.88m telescope. We confirm the presence of transit-timing variations, as previously reported by Armstrong and coworkers. We model the observed transit-timing variations of the inner planet using the synodic chopping formulae given by Deck & Agol (2015). We find two statistically indistinguishable solutions for which the period ratios ($P_{c}/P_{b}$) are located slightly above and below the exact 3:2 commensurability. Despite the degeneracy, we derive the orbital period of the inner planet $P_b$ ~ 7.921 days and the mass of the outer planet $M_c$ ~ 20 $M_{Earth}$. Additional transit photometry (especially for the outer planet) as well as precise radial-velocity measurements would be helpful to break the degeneracy and to determine the mass of the inner planet.
127 - Xianyu Wang , Renu Malhotra 2017
Mean motion resonances [MMRs] play an important role in the formation and evolution of planetary systems and have significantly influenced the orbital properties and distribution of planets and minor planets in the solar system as well as exo-planeta ry systems. Most previous theoretical analyses have focused on the low-to-moderate eccentricity regime, but with new discoveries of high eccentricity resonant minor planets and even exoplanets, there is increasing motivation to examine MMRs in the high eccentricity regime. Here we report on a study of the high eccentricity regime of MMRs in the circular planar restricted three-body problem. Non-perturbative numerical analyses of the 2:1 and the 3:2 interior resonances are carried out for a wide range of secondary-to-primary mass ratio, and for a wide range of eccentricity of the test particle. The surface-of-section technique is used to study the phase space structure near resonances. We identify transitions in phase space at certain critical eccentricities related to the geometry of resonant orbits; new stable libration zones appear at high eccentricity at libration centers shifted from those at low eccentricities. We present novel results on the mass and eccentricity dependence of the resonance libration centers and their widths in semi-major axis. Our results show that MMRs have sizable libration zones at high eccentricities, comparable to those at lower eccentricities.
The distribution of eccentricities of warm giant exoplanets is commonly explained through planet--planet interactions, although no physically sound argument favours the ubiquity of such interactions. No simple, generic explanation has been put forwar d to explain the high mean eccentricity of these planets. In this paper, we revisit a simple, plausible explanation to account for the eccentricities of warm Jupiters: migration inside a cavity in the protoplanetary disc. Such a scenario allows to excite the outer eccentric resonances, a working mechanism for higher mass planets, leading to a growth in the eccentricity while preventing other, closer resonances to damp eccentricity. We test this idea with diverse numerical simulations, which show that the eccentricity of a Jupiter-mass planet around a Sun-like star can increase up to 0.4, a value never reached before with solely planet--disc interactions. This high eccentricity is comparable to, if not larger than, the median eccentricity of warm Saturn- to Jupiter-mass exoplanets. We also discuss the effects such a mechanism would have on exoplanet observations. This scenario could have strong consequences on the discs lifetime and the physics of inner disc dispersal, which could be constrained by the eccentricity distribution of gas giants.
We report precise mass and density measurements of two extremely hot sub-Neptune-size planets from the K2 mission using radial velocities, K2 photometry, and adaptive optics imaging. K2-66 harbors a close-in sub-Neptune-sized (2.49$^{+0.34}_{-0.24} R _oplus$) planet (K2-66b) with a mass of 21.3 $pm$ 3.6 $M_oplus$. Because the star is evolving up the sub-giant branch, K2-66b receives a high level of irradiation, roughly twice the main sequence value. K2-66b may reside within the so-called photoevaporation desert, a domain of planet size and incident flux that is almost completely devoid of planets. Its mass and radius imply that K2-66b has, at most, a meager envelope fraction (< 5%) and perhaps no envelope at all, making it one of the largest planets without a significant envelope. K2-106 hosts an ultra-short-period planet ($P$ = 13.7 hrs) that is one of the hottest sub-Neptune-size planets discovered to date. Its radius (1.82$^{+0.20}_{-0.14} R_oplus$) and mass (9.0 $pm$ 1.6 $M_oplus$) are consistent with a rocky composition, as are all other small ultra-short-period planets with well-measured masses. K2-106 also hosts a larger, longer-period planet (Rp = 2.77$^{+0.37}_{-0.23} R_oplus$, $P$ = 13.3 days) with a mass less than 24.4 $M_oplus$ at 99.7% confidence. K2-66b and K2-106b probe planetary physics in extreme radiation environments. Their high densities reflect the challenge of retaining a substantial gas envelope in such extreme environments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا