ﻻ يوجد ملخص باللغة العربية
We provide an exact study of dynamical correlations for the quantum spin-orbital liquid phases of an SU(2)-symmetric Kitaev honeycomb lattice model. We show that the spin dynamics in this Kugel-Khomskii type model is exactly the density-density correlation function of S=1 fermionic magnons, which could be probed in resonant inelastic x-ray scattering experiments. We predict the characteristic signatures of spin-orbital fractionalization in inelastic scattering experiments and compare them to the ones of the spin-anisotropic Kitaev honeycomb spin liquid. In particular, the resonant inelastic x-ray scattering response shows a characteristic momentum dependence directly related to the dispersion of fermionic excitations. The neutron scattering cross section displays a mixed response of fermionic magnons as well as spin-orbital excitations. The latter has a bandwidth of broad excitations and a vison gap that is three times larger than that of the spin-1/2 Kitaev model.
A quantum spin liquid (QSL) is a state of matter where unpaired electrons spins in a solid are quantum entangled, but do not show magnetic order in the zero-temperature limit. Because such a state may be important to the microscopic origin of high-tr
Resorting to a recently developed theoretical device called dimensional regularization for quantum criticality with a Fermi surface, we examine a metal-insulator quantum phase transition from a Landaus Fermi-liquid state to a U(1) spin-liquid phase w
Two-dimensional electron gases (2DEGs) in SrTiO$_3$ have become model systems for engineering emergent behaviour in complex transition metal oxides. Understanding the collective interactions that enable this, however, has thus far proved elusive. Her
We study a spin-orbital model for 4$d^{1}$ or 5$d^{1}$ Mott insulators in ordered double perovskites with strong spin-orbit coupling. This model is conveniently written in terms of pseudospin and pseudo-orbital operators representing multipoles of th
At sufficiently low temperatures, condensed-matter systems tend to develop order. An exception are quantum spin-liquids, where fluctuations prevent a transition to an ordered state down to the lowest temperatures. While such states are possibly reali