ﻻ يوجد ملخص باللغة العربية
In recent years, there are many research cases for the diagnosis of Parkinsons disease (PD) with the brain magnetic resonance imaging (MRI) by utilizing the traditional unsupervised machine learning methods and the supervised deep learning models. However, unsupervised learning methods are not good at extracting accurate features among MRIs and it is difficult to collect enough data in the field of PD to satisfy the need of training deep learning models. Moreover, most of the existing studies are based on single-view MRI data, of which data characteristics are not sufficient enough. In this paper, therefore, in order to tackle the drawbacks mentioned above, we propose a novel semi-supervised learning framework called Semi-supervised Multi-view learning Clustering architecture technology (SMC). The model firstly introduces the sliding window method to grasp different features, and then uses the dimensionality reduction algorithms of Linear Discriminant Analysis (LDA) to process the data with different features. Finally, the traditional single-view clustering and multi-view clustering methods are employed on multiple feature views to obtain the results. Experiments show that our proposed method is superior to the state-of-art unsupervised learning models on the clustering effect. As a result, it may be noted that, our work could contribute to improving the effectiveness of identifying PD by previous labeled and subsequent unlabeled medical MRI data in the realistic medical environment.
To explore underlying complementary information from multiple views, in this paper, we propose a novel Latent Multi-view Semi-Supervised Classification (LMSSC) method. Unlike most existing multi-view semi-supervised classification methods that learn
Thoracic disease detection from chest radiographs using deep learning methods has been an active area of research in the last decade. Most previous methods attempt to focus on the diseased organs of the image by identifying spatial regions responsibl
While neural networks for learning representation of multi-view data have been previously proposed as one of the state-of-the-art multi-view dimension reduction techniques, how to make the representation discriminative with only a small amount of lab
Knee osteoarthritis (OA) is one of the most common musculoskeletal disorders and requires early-stage diagnosis. Nowadays, the deep convolutional neural networks have achieved greatly in the computer-aided diagnosis field. However, the construction o
Deep brain stimulation (DBS) is an effective therapy as an alternative to pharmaceutical treatments for Parkinsons disease (PD). Aside from factors such as instrumentation, treatment plans, and surgical protocols, the success of the procedure depends