ﻻ يوجد ملخص باللغة العربية
We investigate scaling rules for the ionization cross sections of multicharged ions on molecules of biological interest. The cross sections are obtained using a methodology presented in [Mendez et al. J. Phys B (2020)], which considers distorted-wave calculations for atomic targets combined with a molecular stoichiometric model. We examine ions with nuclear charges Z from +1 to +8 impacting on five nucleobases -adenine, cytosine, guanine, thymine, uracil-, tetrahydrofuran, pyrimidine, and water. We investigate scaling rules of the ionization cross section with the ion charge and the number of active electrons per molecule. Combining these two features, we define a scaling law for any ion and molecular target, which is valid in the intermediate to high energy range, i.e., 0.2-5 MeV/amu for oxygen impact. Thus, the forty ion-molecule systems analyzed here can be merged into a single band. We confirm the generality of our independent scaling law with several collisional systems.
In the present work, we investigate the ionization of molecules of biological interest by the impact of multicharged ions in the intermediate to high energy range. We performed full non-perturbative distorted-wave calculations (CDW) for thirty-six co
Acene molecules (anthracene, tetracene, pentacene) and fullerene (C$_{60}$) are embedded in He nanodroplets (He$_N$) and probed by EUV synchrotron radiation. When resonantly exciting the He nanodroplets, the embedded molecules M are efficiently ioniz
As opposed to purely molecular systems where electron dynamics proceed only through intramolecular processes, weakly bound complexes such as He droplets offer an environment where local excitations can interact with neighbouring embedded molecules le
We report on the production and study of stable, highly charged droplets of superfluid helium. Using a novel experimental setup we produce neutral beams of liquid helium nanodroplets containing millions of atoms or more that can be ionized by electro
We study frustrated double ionization in a strongly-driven heteronuclear molecule HeH$^{+}$ and compare with H$_2$. We compute the probability distribution of the sum of the final kinetic energies of the nuclei for strongly-driven HeH$^{+}$. We find