ترغب بنشر مسار تعليمي؟ اضغط هنا

On the uniform convergence of ergodic averages for $C^*$-dynamical systems

88   0   0.0 ( 0 )
 نشر من قبل Francesco Fidaleo
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English
 تأليف Francesco Fidaleo




اسأل ChatGPT حول البحث

We investigate some ergodic and spectral properties of general (discrete) $C^*$-dynamical systems $({mathfrak A},Phi)$ made of a unital $C^*$-algebra and a multiplicative, identity-preserving $*$-map $Phi:{mathfrak A}to{mathfrak A}$, particularising the situation when $({mathfrak A},Phi)$ enjoys the property of unique ergodicity with respect to the fixed-point subalgebra. For $C^*$-dynamical systems enjoying or not the strong ergodic property mentioned above, we provide conditions on $lambda$ in the unit circle ${zin{mathbb C}mid |z|=1}$ and the corresponding eigenspace ${mathfrak A}_lambdasubset{mathfrak A}$ for which the sequence of Cesaro averages $left(frac1{n}sum_{k=0}^{n-1}lambda^{-k}Phi^kright)_{n>0}$, converges point-wise in norm. We also describe some pivotal examples coming from quantum probability, to which the obtained results can be applied.



قيم البحث

اقرأ أيضاً

Starting from a discrete $C^*$-dynamical system $(mathfrak{A}, theta, omega_o)$, we define and study most of the main ergodic properties of the crossed product $C^*$-dynamical system $(mathfrak{A}rtimes_alphamathbb{Z}, Phi_{theta, u},om_ocirc E)$, $E :mathfrak{A}rtimes_alphamathbb{Z}rightarrowga$ being the canonical conditional expectation of $mathfrak{A}rtimes_alphamathbb{Z}$ onto $mathfrak{A}$, provided $ainaut(ga)$ commute with the $*$-automorphism $th$ up tu a unitary $uinga$. Here, $Phi_{theta, u}inaut(mathfrak{A}rtimes_alphamathbb{Z})$ can be considered as the fully noncommutative generalisation of the celebrated skew-product defined by H. Anzai for the product of two tori in the classical case.
Necessary and sufficient conditions are presented for the Abel averages of discrete and strongly continuous semigroups, $T^k$ and $T_t$, to be power convergent in the operator norm in a complex Banach space. These results cover also the case where $T $ is unbounded and the corresponding Abel average is defined by means of the resolvent of $T$. They complement the classical results by Michael Lin establishing sufficient conditions for the corresponding convergence for a bounded $T$.
We provide a systematic study of a noncommutative extension of the classical Anzai skew-product for the cartesian product of two copies of the unit circle to the noncommutative 2-tori. In particular, some relevant ergodic properties are proved for th ese quantum dynamical systems, extending the corresponding ones enjoyed by the classical Anzai skew-product. As an application, for a uniquely ergodic Anzai skew-product $F$ on the noncommutative $2$-torus $ba_a$, $ainbr$, we investigate the pointwise limit, $lim_{nto+infty}frac1{n}sum_{k=0}^{n-1}l^{-k}F^k(x)$, for $xinba_a$ and $l$ a point in the unit circle, and show that there exist examples for which the limit does not exist even in the weak topology.
78 - Gabor Szabo 2017
We study flows on C*-algebras with the Rokhlin property. We show that every Kirchberg algebra carries a unique Rokhlin flow up to cocycle conjugacy, which confirms a long-standing conjecture of Kishimoto. We moreover present a classification theory f or Rokhlin flows on C*-algebras satisfying certain technical properties, which hold for many C*-algebras covered by the Elliott program. As a consequence, we obtain the following further classification theorems for Rokhlin flows. Firstly, we extend the statement of Kishimotos conjecture to the non-simple case: Up to cocycle conjugacy, a Rokhlin flow on a separable, nuclear, strongly purely infinite C*-algebra is uniquely determined by its induced action on the prime ideal space. Secondly, we give a complete classification of Rokhlin flows on simple classifiable $KK$-contractible C*-algebras: Two Rokhlin flows on such a C*-algebra are cocycle conjugate if and only if their induced actions on the cone of lower-semicontinuous traces are affinely conjugate.
Let $G$ be a locally compact abelian group. By modifying a theorem of Pedersen, it follows that actions of $G$ on $C^*$-algebras $A$ and $B$ are outer conjugate if and only if there is an isomorphism of the crossed products that is equivariant for th e dual actions and preserves the images of $A$ and $B$ in the multiplier algebras of the crossed products. The rigidity problem discussed in this paper deals with the necessity of the last condition concerning the images of $A$ and $B$. There is an alternative formulation of the problem: an action of the dual group $hat G$ together with a suitably equivariant unitary homomorphism of $G$ give rise to a generalized fixed-point algebra via Landstads theorem, and a problem related to the above is to produce an action of $hat G$ and two such equivariant unitary homomorphisms of $G$ that give distinct generalized fixed-point algebras. We present several situations where the condition on the images of $A$ and $B$ is redundant, and where having distinct generalized fixed-point algebras is impossible. For example, if $G$ is discrete, this will be the case for all actions of $G$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا