ترغب بنشر مسار تعليمي؟ اضغط هنا

A Hilbert Transform method for measuring linear and nonlinear phase shifts imparted by metasurfaces

56   0   0.0 ( 0 )
 نشر من قبل Sebastian Schulz
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Nonlinear metasurfaces that dynamically manipulate the phase of a passing light beam are of interest for a wide range of applications. The controlled operation of such devices requires accurate measurements of the optical transmission phase in both the linear and nonlinear regime, an experimentally challenging task. In this paper we show that this phase information can be extracted directly from simple transmission measurements, using a Hilbert transform approach, removing the need for complicated, interferometric experimental set-ups, and enabling direct measurements of the phase in conditions not suitable for other traditional approaches, such Z-scan measurements.



قيم البحث

اقرأ أيضاً

We introduce the concept of nonlinear graphene metasurfaces employing the controllable interaction between a graphene layer and a planar metamaterial. Such hybrid metasurfaces support two types of subradiant resonant modes, asymmetric modes of struct ured metamaterial elements (metamolecules) and graphene plasmons exhibiting strong mutual coupling and avoided dispersion crossing. High tunability of graphene plasmons facilitates strong interaction between the subradiant modes, modifying the spectral position and lifetime of the associated Fano resonances. We demonstrate that strong resonant interaction, combined with the subwavelength localization of plasmons, leads to the enhanced nonlinear response and high efficiency of the second-harmonic generation.
We demonstrate the quantized transfer of photon energy and transverse momentum to a high-coherence electron beam. In an ultrafast transmission electron microscope, a three-dimensional phase modulation of the electron wavefunction is induced by transm itting the beam through a laser-illuminated thin graphite sheet. This all-optical free-electron phase space control results in high-purity superpositions of linear momentum states, providing an elementary component for optically programmable electron phase plates and beam splitters.
Metasurfaces, and in particular those containing plasmonic-based metallic elements, constitute a particularly attractive set of materials. By means of modern nanolithographic fabrication techniques, flat, ultrathin optical elements may be constructed . However, in spite of their strong optical nonlinearities, plasmonic metasurfaces have so far been investigated mostly in the linear regime. Here we introduce full nonlinear phase control over plasmonic elements in metasurfaces. We show that for nonlinear interactions in a phase-gradient nonlinear metasurface a new anomalous nonlinear phase matching condition prevails, which is the nonlinear analog of the generalized Snell law demonstrated for linear metasurfaces. This phase matching condition is very different from the other known phase matching schemes. The subwavelength phase control of optical nonlinearities provides a foundation for the design of flat nonlinear optical elements based on metasurfaces. Our demonstrated flat nonlinear elements (i.e. lenses) act as generators and manipulators of the frequency-converted signal.
Nonlinear nanostructured surfaces provide a paradigm shift in nonlinear optics with new ways to control and manipulate frequency conversion processes at the nanoscale, also offering novel opportunities for applications in photonics, chemistry, materi al science, and biosensing. Here, we develop a general approach to employ sharp resonances in metasurfaces originated from the physics of bound states in the continuum for both engineering and enhancing the nonlinear response. We study experimentally the third-harmonic generation from metasurfaces composed of symmetry-broken silicon meta-atoms and reveal that the harmonic generation intensity depends critically on the asymmetry parameter. We employ the concept of the critical coupling of light to the metasurface resonances to uncover the effect of radiative and nonradiative losses on the nonlinear conversion efficiency.
We present the development and performance of a Fourier transformation (FT) based Raman spectrometer working with visible laser (532 nm) excitation. It is generally thought that FT-Raman spectrometers are not viable in the visible range where shot-no ise limits the detector performance and therein they are outperformed by grating based, dispersive ones. We show that contrary to this common belief, the recent advances of high-performance interference filters makes the FT-Raman design a valid alternative to dispersive Raman spectrometers for samples which do not luminesce. We critically compare the performance of our spectrometer to two dispersive ones: a home-built single channel and a state-of-the-art CCD based instruments. We demonstrate a similar or even better sensitivity than the CCD based dispersive spectrometer particularly when the laser power density is considered. The instrument possesses all the known advantages of the FT principle of spectral accuracy, high throughput, and economic design. We also discuss the general considerations which helps the community reassess the utility of the different Raman spectrometer designs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا