ترغب بنشر مسار تعليمي؟ اضغط هنا

Simulating the Fermi Bubbles as Forward Shocks Driven by AGN Jets

95   0   0.0 ( 0 )
 نشر من قبل Ruiyu Zhang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Fermi bubbles are two giant bubbles in gamma rays lying above and below the Galactic center (GC). Despite numerous studies on the bubbles, their origin and emission mechanism remain elusive. Here we use a suite of hydrodynamic simulations to study the scenario where the cosmic rays (CRs) in the bubbles are mainly accelerated at the forward shocks driven by a pair of opposing jets from Sgr A*. We find that an active galactic nucleus (AGN) jet event happened $5-6$ Myr ago can naturally reproduce the bilobular morphology of the bubbles, and the postshock gas temperature in the bubbles is heated to $sim0.4$ keV, consistent with recent X-ray observations. The forward shocks compress the hot halo gas, and at low latitudes, the compressed gas shows an X-shaped structure, naturally explaining the biconical X-ray structure in the ROSAT 1.5 keV map in both morphology and X-ray surface brightness. CR acceleration is most efficient in the head regions of the bubbles during the first 2 Myrs. The opposing jets release a total energy of $sim 10^{55}$ erg with an Eddington ratio of $sim 10^{-3}$, which falls well in the range of the hot accretion flow mode for black holes. Our simulations further show that the forward shocks driven by spherical winds at the GC typically produce bubbles with much wider bases than observed, and could not reproduce the biconical X-ray structure at low latitudes. This suggests that starburst or AGN winds are unlikely the origin of the bubbles in the shock scenario.



قيم البحث

اقرأ أيضاً

The bipolar, nonthermal, high-latitude lobes known as the Fermi bubbles (FBs) are thought to originate from a massive energy release near the Galactic centre (GC). We constrain the FB engine and the circumgalactic medium (CGM) by analytically and num erically modeling the FB edges as strong forward shocks, as inferred from recent observations. A non-directed energy release produces shocks too spherical to account for observations even for a maximally massive Galactic disc, critical CGM rotation, or injection effectively offset from the GC. In contrast, collimated injection nearly perpendicular to the disc can account for observations in both ballistic (free expansion) and slowdown regimes, as we show using a simple stratified evolution model verified by hydrodynamic simulations. FBs still in their ballistic regime require injection (at $zsimeq100$ pc heights in our model) with a half-opening angle $thetasimeq4^circ$, a normalized velocity $beta_{-2}equiv v/(0.01c)gtrsim 0.4$, and an energy $Egtrsim2beta_{-2}^2times 10^{55}$ erg, launched $mathbb{T}simeq 3.3beta_{-2}^{-1}$ Myr ago, showing a distinctive low-pressure region behind the bubble head. Slowing-down (mass accumulated) FBs require a faster injection, a thinner jet, a smaller $E/(beta_{-2}theta)^{2}$, and a comparable $mathbb{T}$, and follow a ballistic stage that must reach a height $z_{s}gtrsim 5$ kpc.
The Galactic Centers giant outflows are manifest in three different, non-thermal phenomena: i) the hard-spectrum, gamma-ray `Fermi Bubbles emanating from the nucleus and extending to |b| ~ 50 degrees; ii) the hard-spectrum, total-intensity microwave (~ 20-40 GHz) `Haze extending to |b| ~ 35 degrees in the lower reaches of the Fermi Bubbles; and iii) the steep spectrum, polarized, `S-PASS radio (~ 2-20 GHz) Lobes that envelop the Bubbles and extend to |b| ~ 60 degrees. We find that the nuclear outflows inflate a genuine bubble in each Galactic hemisphere that has the classical structure, working outwards, of reverse shock, contact discontinuity, and forward shock. Expanding into the finite pressure of the halo and given appreciable cooling and gravitational losses, the contact discontinuity of each bubble is now expanding only very slowly. We find observational signatures in both hemispheres of giant, reverse shocks at heights of ~ 1 kpc above the nucleus; their presence ultimately explains all three of the non-thermal phenomena mentioned above. Synchrotron emission from shock-reaccelerated cosmic-ray electrons explains the spectrum, morphology, and vertical extent of the microwave Haze and the polarized radio Lobes. Collisions between shock-reaccelerated hadrons and denser gas in cooling condensations that form inside the contact discontinuity account for most of the Bubbles gamma-ray emissivity.
150 - M. V. Medvedev 2012
Merging binaries of compact relativistic objects (neutron stars and black holes) are thought to be progenitors of short gamma-ray bursts and sources of gravitational waves, hence their study is of great importance for astrophysics. Because of the str ong magnetic field of one or both binary members and high orbital frequencies, these binaries are strong sources of energy in the form of Poynting flux (e.g., magnetic-field-dominated outflows, relativistic leptonic winds, electromagnetic and plasma waves). The steady injection of energy by the binary forms a bubble (or a cavity) filled with matter with the relativistic equation of state, which pushes on the surrounding plasma and can drive a shock wave in it. Unlike the Sedov-von Neumann-Taylor blast wave solution for a point-like explosion, the shock wave here is continuously driven by the ever-increasing pressure inside the bubble. We calculate from the first principles the dynamics and evolution of the bubble and the shock surrounding it and predict that such systems can be observed as radio sources a few hours before and after the merger. At much later times, the shock is expected to settle onto the Sedov-von Neumann-Taylor solution, thus resembling an explosion.
91 - Uri Keshet , Ilya Gurwich 2017
The nature of the bipolar, $gamma$-ray Fermi bubbles (FB) is still unclear, in part because their faint, high-latitude X-ray counterpart has until now eluded a clear detection. We stack ROSAT data at varying distances from the FB edges, thus boosting the signal and identifying an expanding shell behind the southwest, southeast, and northwest edges, albeit not in the dusty northeast sector near Loop I. A Primakoff-like model for the underlying flow is invoked to show that the signals are consistent with halo gas heated by a strong, forward shock to $sim$keV temperatures. Assuming ion--electron thermal equilibrium then implies a $sim10^{56}$ erg event near the Galactic centre $sim7$ Myr ago. However, the reported high absorption-line velocities suggest a preferential shock-heating of ions, and thus more energetic ($sim 10^{57}$ erg), younger ($lesssim 3$ Myr) FBs.
Several galaxy clusters are known to present multiple and misaligned pairs of cavities seen in X-rays, as well as twisted kiloparsec-scale jets at radio wavelengths. It suggests that the AGN precessing jets play a role in the formation of the misalig ned bubbles. Also, X-ray spectra reveal that typically these systems are also able to supress cooling flows, predicted theoretically. The absence of cooling flows in galaxy clusters has been a mistery for many years since numerical simulations and analytical studies suggest that AGN jets are highly energetic, but are unable to redistribute it at all directions. We performed 3D hydrodynamical simulations of the interaction between a precessing AGN jet and the warm intracluster medium plasma, which dynamics is coupled to a NFW dark matter gravitational potential. Radiative cooling has been taken into account and the cooling flow problem was studied. We found that precession is responsible for multiple pairs of bubbles, as observed. The misaligned bubbles rise up to scales of tens of kiloparsecs, where the thermal energy released by the jets are redistributed. After $sim 150$ Myrs, the temperature of the gas within the cavities is kept of order of $sim 10^7$ K, while the denser plasma of the intracluster medium at the central regions reaches $T sim 10^5$ K. The existence of multiple bubbles, at diferent directions, result in an integrated temperature along the line of sight much larger than the simulations of non-precessing jets. This result is in agreement with the observations. The simulations reveal that the cooling flows cessed $sim 50 - 70$ Myr after the AGN jets are started.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا