ﻻ يوجد ملخص باللغة العربية
This paper studies reduced-order modeling of dynamic networks with strongly connected topology. Given a graph clustering of an original complex network, we construct a quotient graph with less number of vertices, where the edge weights are parameters to be determined. The model of the reduced network is thereby obtained with parameterized system matrices, and then an edge weighting procedure is devised, aiming to select an optimal set of edge weights that minimizes the approximation error between the original and the reduced-order network models in terms of H2-norm. The effectiveness of the proposed method is illustrated by a numerical example.
Large-scale network systems describe a wide class of complex dynamical systems composed of many interacting subsystems. A large number of subsystems and their high-dimensional dynamics often result in highly complex topology and dynamics, which pose
This paper provides an $H_2$ optimal scheme for reducing diffusively coupled second-order systems evolving over undirected networks. The aim is to find a reduced-order model that not only approximates the input-output mapping of the original system b
A dynamical system entrains to a periodic input if its state converges globally to an attractor with the same period. In particular, for a constant input the state converges to a unique equilibrium point for any initial condition. We consider the pro
In this effort, a novel operator theoretic framework is developed for data-driven solution of optimal control problems. The developed methods focus on the use of trajectories (i.e., time-series) as the fundamental unit of data for the resolution of o
We propose a neural network approach for solving high-dimensional optimal control problems arising in real-time applications. Our approach yields controls in a feedback form and can therefore handle uncertainties such as perturbations to the systems