ﻻ يوجد ملخص باللغة العربية
One of the most exciting phenomena observed in crystalline disordered membranes, including a suspended graphene, is rippling, i.e. a formation of static flexural deformations. Despite an active research, it still remains unclear whether the rippled phase exists in the thermodynamic limit, or it is destroyed by thermal fluctuations. We demonstrate that a sufficiently strong short-range disorder stabilizes ripples, whereas in the case of a weak disorder the thermal flexural fluctuations dominate in the thermodynamic limit. The phase diagram of the disordered suspended graphene contains two separatrices: the crumpling transition line dividing the flat and crumpled phases and the rippling transition line demarking the rippled and clean phases. At the intersection of the separatrices there is the unstable, multicritical point which splits up all four phases. Most remarkably, rippled and clean flat phases are described by a single stable fixed point which belongs to the rippling transition line. Coexistence of two flat phases in the single point is possible due to non-analiticity in corresponding renormalization group equations and reflects non-commutativity of limits of vanishing thermal and rippling fluctuations.
An acoustic plasmon is predicted to occur, in addition to the conventional two-dimensional (2D) plasmon, as the collective motion of a system of two types of electronic carriers coexisting in the very same 2D band of extrinsic (doped or gated) graphe
We study the effects that ripples induce on the electrical and magnetic properties of graphene. The variation of the interatomic distance created by the ripples translates in a modulation of the hopping parameter between carbon atoms. A tight binding
A recently proposed curvature renormalization group scheme for topological phase transitions defines a generic `curvature function as a function of the parameters of the theory and shows that topological phase transitions are signalled by the diverge
Single-layer graphene sheets are typically characterized by long-wavelength corrugations (ripples) which can be shown to be at the origin of rather strong potentials with both scalar and vector components. We present an extensive microscopic study, b
The textbook thermophoretic force which acts on a body in a fluid is proportional to the local temperature gradient. The same is expected to hold for the macroscopic drift behavior of a diffusive cluster or molecule physisorbed on a solid surface. Th