ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterizing the continuous gravitational-wave signal from boson clouds around Galactic isolated black holes

433   0   0.0 ( 0 )
 نشر من قبل Sylvia Zhu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ultralight bosons can form large clouds around stellar-mass black holes via the superradiance instability. Through processes such as annihilation, these bosons can source continuous gravitational wave signals with frequencies within the range of LIGO and Virgo. If boson annihilation occurs, then the Galactic black hole population will give rise to many gravitational signals; we refer to this as the ensemble signal. We characterize the ensemble signal as observed by the gravitational-wave detectors; this is important because the ensemble signal carries the primary signature that a continuous wave signal has a boson annihilation origin. We explore how a broad set of black hole population parameters affects the resulting spin-0 boson annihilation signal and consider its detectability by recent searches for continuous gravitational waves. A population of $10^8$ black holes with masses up to $30mathrm{M}_odot$ and a flat dimensionless initial spin distribution between zero and unity produces up to a thousand signals loud enough to be in principle detected by these searches. For a more moderately spinning population the number of signals drops by about an order of magnitude, still yielding up to a hundred detectable signals for some boson masses. A non-detection of annihilation signals at frequencies between 100 and 1200 Hz disfavors the existence of scalar bosons with rest energies between $2times10^{-13}$ and $2.5times10^{-12}$ eV. Finally we show that, depending on the black hole population parameters, care must be taken in assuming that the continuous wave upper limits from searches for isolated signals are still valid for signals that are part of a dense ensemble: Between 200 and 300 Hz, we urge caution when interpreting a null result for bosons between 4 and $6times10^{-13}$ eV.



قيم البحث

اقرأ أيضاً

The superradiant instability can lead to the generation of extremely dense axion clouds around rotating black holes. We show that, despite the long lifetime of the QCD axion with respect to spontaneous decay into photon pairs, stimulated decay become s significant above a minimum axion density and leads to extremely bright lasers. The lasing threshold can be attained for axion masses $mu gtrsim 10^{-8} mathrm{eV}$, which implies superradiant instabilities around spinning primordial black holes with mass $lesssim 0.01M_odot$. Although the latter are expected to be non-rotating at formation, a population of spinning black holes may result from subsequent mergers. We further show that lasing can be quenched by Schwinger pair production, which produces a critical electron-positron plasma within the axion cloud. Lasing can nevertheless restart once annihilation lowers the plasma density sufficiently, resulting in multiple laser bursts that repeat until the black hole spins down sufficiently to quench the superradiant instability. In particular, axions with a mass $sim 10^{-5} mathrm{eV}$ and primordial black holes with mass $sim 10^{24}$ kg, which may account for all the dark matter in the Universe, lead to millisecond-bursts in the GHz radio-frequency range, with peak luminosities $sim 10^{42}$ erg/s, suggesting a possible link to the observed fast radio bursts.
Galactic ultra compact binaries are expected to be the dominant source of gravitational waves in the milli-Hertz frequency band. Of the tens of millions of galactic binaries with periods shorter than an hour, it is estimated that a few tens of thousa nd will be resolved by the future Laser Interferometer Space Antenna (LISA). The unresolved remainder will be the main source of ``noise between 1-3 milli-Hertz. Typical galactic binaries are millions of years from merger, and consequently their signals will persist for the the duration of the LISA mission. Extracting tens of thousands of overlapping galactic signals and characterizing the unresolved component is a central challenge in LISA data analysis, and a key contribution to arriving at a global solution that simultaneously fits for all signals in the band. Here we present an end-to-end analysis pipeline for galactic binaries that uses trans-dimensional Bayesian inference to develop a time-evolving catalog of sources as data arrive from the LISA constellation.
As a consequence of superradiant instability induced in Kerr black holes, ultra-light boson clouds can be a source of persistent gravitational waves, potentially detectable by current and future gravitational-wave detectors. These signals have been p redicted to be nearly monochromatic, with a small steady frequency increase (spin-up), but given the several assumptions and simplifications done at theoretical level, it is wise to consider, from the data analysis point of view, a broader class of gravitational signals in which the phase (or the frequency) slightly wander in time. Also other types of sources, e.g. neutron stars in which a torque balance equilibrium exists between matter accretion and emission of persistent gravitational waves, would fit in this category. In this paper we present a robust and computationally cheap analysis pipeline devoted to the search of such kind of signals. We provide a full characterization of the method, through both a theoretical sensitivity estimation and through the analysis of syntethic data in which simulated signals have been injected. The search setup for both all-sky searches and higher sensitivity directed searches is discussed.
The metric of a spacetime can be greatly simplified if the spacetime is circular. We prove that in generic effective theories of gravity, the spacetime of a stationary, axisymmetric and asymptotically flat solution must be circular if the solution ca n be obtained perturbatively from a solution in the general relativity limit. This result applies to a broad class of gravitational theories that include arbitrary scalars and vectors in their light sector, so long as their nonstandard kinetic terms and nonmininal couplings to gravity are treated perturbatively.
Dirac cloud is in absence in general relativity since the superradiance mechanism fails to work for Dirac fields. For the first time we find a mechanism to support Dirac clouds in modified gravity. We study quasi bound states of Dirac particles aroun d a charged spherical black hole in dilatonic gravity. We find that the quasi bound states become real bound states when the central black hole becomes extremal. We make an intensive study of the energy spectrum of the stationary clouds for different fine structure constant $mu M$, and reveal the existence condition of these clouds. Our result strongly implies that extreme dilatonic black holes behave as elementary particles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا