ترغب بنشر مسار تعليمي؟ اضغط هنا

Frustrated Magnetism in Triangular Lattice TlYbS$_2$ Crystals Grown via Molten Flux

76   0   0.0 ( 0 )
 نشر من قبل Tim Ferreira
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The triangular lattice compound TlYbS$_2$ was prepared as large single crystals via a molten flux growth technique using sodium chloride. Anisotropic magnetic susceptibility measurements down to 0.4 K indicate a complete absence of long-range magnetic order. Despite this lack of long-range order, short-range antiferromagnetic interactions are evidenced through broad transitions, suggesting frustrated behavior. Variable magnetic field measurements reveal metamagnetic behavior at temperatures less than 2 K. Complex low temperature field-tunable magnetic behavior, in addition to no observable long-range order down to 0.4 K, suggest that TlYbS$_2$ is a frustrated magnet and a possible quantum spin liquid candidate.

قيم البحث

اقرأ أيضاً

We present a novel hydrated layered manganate MgMn$_3$O$_7$$cdot$3H$_2$O as a maple-leaf-lattice (MLL) antiferromagnet candidate. The MLL is obtained by regularly depleting 1/7 of the lattice points from a triangular lattice so that the magnetic conn ectivity $z = 5$ and is thus intermediately frustrated between the triangular ($z = 6$) and kagome ($z = 4$) lattices. In MgMn$_3$O$_7$$cdot$3H$_2$O, the Mn$^{4+}$ ions, carrying Heisenberg spin 3/2, form a regular MLL lattice in the quasi-two-dimensional structure. Magnetization and heat capacity measurements using a hydrothermally-prepared powder sample reveal successive antiferromagnetic transitions at 5 and 15 K. A high-field magnetization curve up to 60 T at 1.3 K exhibits a multi-step plateau-like anomaly. We discuss the unique frustration of the MLL antiferromagnet in which the chiraldegree of freedom may play an important role.
A triangular lattice selenide series of rare earth (RE), CsRESe2, were synthesized as large single crystals using a flux growth method. This series stabilized in either trigonal (R-3m) or hexagonal (P63/mmc) crystal systems. Physical properties of Cs RESe2 were explored by magnetic susceptibility and heat capacity measurements down to 0.4 K. Antiferromagnetic interaction was observed in all magnetic compounds, while no long-range magnetic order was found, indicating the frustrated magnetism. CsDySe2 presents spin freezing at 0.7 K, revealing a spin-glass state. CsCeSe2 and CsYbSe2 present broad peaks at 0.7 K and 1.5 K in the magnetization, respectively, suggesting the short-range interactions between magnetic rare earth ions. The lack of signature for long-range magnetic order and spin freezing down to 0.4 K in these compounds (RE = Ce, Yb) implies their candidacy for quantum spin liquid state.
Birnessite compounds are stable across a wide range of compositions that produces a remarkable diversity in their physical, electrochemical and functional properties. These are hydrated analogues of the magnetically frustrated, mixed-valent manganese oxide structures, with general formula, NaxMnO2. Here we demonstrate that the direct hydration of layered rock-salt type a-NaMnO2, with the geometrically frustrated triangular lattice topology, yields the birnessite type oxide, Na0.36MnO2 0.2H2O, transforming its magnetic properties. This compound has a much-expanded interlayer spacing compared to its parent a-NaMnO2 compound. We show that while the parent a-NaMnO2 possesses a Neel temperature of 45 K as a result of broken symmetry in the Mn3+ sub-lattice, the hydrated derivative undergoes collective spin-freezing at 29 K within the Mn3+/Mn4+ sub-lattice. Scaling-law analysis of the frequency dispersion of the AC susceptibility, as well as the temperature-dependent, low-field DC magnetization confirm a cooperative spin-glass state of strongly interacting spins. This is supported by complementary spectroscopic analysis (HAADF-STEM, EDS, EELS) as well as by a structural investigation (high-resolution TEM, X-ray and neutron powder diffraction) that yield insights into the chemical and atomic structure modifications. We conclude that the spin-glass state in birnessite is driven by the spin-frustration imposed by the underlying triangular lattice topology that is further enhanced by the in-plane bond-disorder generated by the mixed-valent character of manganese in the layers.
The layered {beta}-NaMnO2, a promising Na-ion energy-storage material has been investigated for its triangular lattice capability to promote complex magnetic configurations that may release symmetry restrictions for the coexistence of ferroelectric a nd magnetic orders. The complexity of the neutron powder diffraction patterns underlines that the routinely adopted commensurate structural models are inadequate. Instead, a single-phase superspace symmetry description is necessary, demonstrating that the material crystallizes in a compositionally modulated q= (0.077(1), 0, 0) structure. Here, Mn3+ Jahn-Teller distorted MnO6 octahedra form corrugated layer stacking sequences of the {beta}-NaMnO2 type, which are interrupted by flat sheets of the {alpha}-like oxygen topology. Spontaneous long-range collinear antiferromagnetic order, defined by the propagation vector k= (1/2, 1/2, 1/2), appears below TN1= 200 K. Moreover, a second transition into a spatially modulated proper-screw magnetic state (k+-q) is established at TN2= 95 K, with an antiferromagnetic order parameter resembling that of a two-dimensional (2D) system. The evolution of 23Na NMR spin-lattice relaxation identifies a magnetically inhomogene-ous state in the intermediate T-region (TN2 <T< TN1), while its strong suppression below TN2 indicates that a spin-gap opens in the excitation spectrum. High-resolution neutron inelastic scattering confirms that the magnetic dynamics are indeed gapped ({Delta}~5 meV) in the low-temperature magnetic phase, while simulations on the basis of the single-mode approximation suggest that Mn-spins residing on ad-jacent antiferromagnetic chains, establish sizable 2D correlations. Our analysis points that novel struc-tural degrees of freedom promote, cooperative magnetism and emerging dielectric properties in this non-perovskite-type of manganite.
Rare earth triangular lattice materials have been proposed as a good platform for the investigation of frustrated magnetic ground states. KErSe$_2$ with the delafossite structure, contains perfect two-dimensional Er$^{3+}$ triangular layers separated by potassium ions, realizing this ideal configuration and inviting study. Here we investigate the magnetism of KErSe$_2$ at miliKelvin temperatures by heat capacity and neutron powder diffraction. Heat capacity results reveal a magnetic transition at 0.2 K in zero applied field. This long-range order is suppressed by an applied magnetic field of 0.5 T below 0.08 K. Neutron powder diffraction suggests that the zero-field magnetic structure orders with $k=(frac{1}{2},0,frac{1}{2})$ in a stripe spin structure. Unexpectedly, Er is found to have a reduced moment of 3.06(1) $mu_B$/Er in the ordered state and diffuse magnetic scattering, which originates at higher temperatures, is found to persist in the ordered state potentially indicating magnetic fluctuations. Neutron diffraction collected under an applied field shows a metamagnetic transition at $sim$ 0.5 T to ferromagnetic order with $k$=(0,0,0) and two possible structures, which are likely dependent on the applied field direction. First principle calculations show that the zero field stripe spin structure can be explained by the first, second and third neighbor couplings in the antiferromagnetic triangular lattice.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا