ترغب بنشر مسار تعليمي؟ اضغط هنا

Three-dimensional structure of a string-fluid complex plasma

160   0   0.0 ( 0 )
 نشر من قبل Mikhail Pustylnik
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M.Y. Pustylnik




اسأل ChatGPT حول البحث

Three-dimensional structure of complex (dusty) plasmas was investigated under long-term microgravity conditions in the International-Space-Station-based Plasmakristall-4 facility. The microparticle suspensions were confined in a polarity-switched dc discharge. The experimental results were compared to the results of the molecular dynamics simulations with the interparticle interaction potential represented as a superposition of isotropic Yukawa and anisotropic quadrupole terms. Both simulated and experimental data exhibited qualitatively similar structural features indicating the bulk liquid-like order with the inclusion of solid-like strings aligned with the axial electric field. Individual strings were identified and their size spectrum was calculated. The decay rate of the size spectrum was found to decrease with the enhancement of string-like structural features.



قيم البحث

اقرأ أيضاً

Structure of Mach cones in a crystalline complex plasma has been studied experimentally using an intensity sensitive imaging, which resolved particle motion in three dimensions. This revealed a previously unknown out-of-plane cone structure, which ap peared due to excitation of the vertical wave mode. The complex plasma consisted of micron sized particles forming a monolayer in a plasma sheath of a gas discharge. Fast particles, spontaneously moving under the monolayer, created Mach cones with multiple structures. The in-plane cone structure was due to compressional and shear lattice waves.
The influence of a supersonic projectile on a three-dimensional complex plasma is studied. Micron sized particles in a low-temperature plasma formed a large undisturbed system in the new Zyflex chamber during microgravity conditions. A supersonic pro be particle excited a Mach cone with Mach number M $approx$ 1.5 - 2 and double Mach cone structure in the large weakly damped particle cloud. The speed of sound is measured with different methods and particle charge estimations are compared to calculations from standard theories. The high image resolution enables the study of Mach cones in microgravity on the single particle level of a three-dimensional complex plasma and gives insight to the dynamics. A heating of the microparticles is discovered behind the supersonic projectile but not in the flanks of the Mach cone.
226 - L. Worner , C. Rath , V. Nosenko 2012
The structure of driven three-dimensional complex plasma clusters was studied experimentally. The clusters consisted of around 60 hollow glass spheres with a diameter of 22 microns that were suspended in a plasma of rf discharge in argon. The particl es were confined in a glass box with conductive yet transparent coating on its four side walls, this allowed to manipulate the particle cluster by biasing the confining walls in a certain sequence. In this work, a rotating electric field was used to drive the clusters. Depending on the excitation frequency, the clusters rotated (10^4 - 10^7 times slower than the rotating field) or remained stationary. The cluster structure was neither that of nested spherical shells nor simple chain structure. Strings of various lengths were found consisting of 2 to 5 particles, their spatial and temporal correlations were studied. The results are compared to recent simulations.
We study deformation of a cavity around a large projectile moving with subsonic velocity in the cloud of small dust particles. To solve this problem, we employ the Navier--Stokes equation for a compressible fluid with due regard for friction between dust particles and atoms of neutral gas. The solutions shows that due to friction, the pressure of dust cloud at the boundary of the cavity behind the projectile can become negative, which entails formation of a microscopic void free from dust particles -- the cavity deformation. Corresponding threshold velocity is calculated, which is found to decrease with increasing cavity size. Measurement of such velocity makes it possible to estimate the static pressure inside the dust cloud.
A nonlinear unified fluid model that describes the Equatorial Electrojet, including the Farley-Buneman and gradient-drift plasma instabilities, is defined and shown to be a noncanonical Hamiltonian system. Two geometric constants of motion for the mo del are obtained and shown to be Casimir invariants. A reformulation of the model shows the roles of the density-gradient scale-length ($L_n$) and the cross-field drift-velocity (${upsilon}_E$) in controlling the dynamics of unstable modes in the growing, transition, and saturation phases of a simulation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا