ﻻ يوجد ملخص باللغة العربية
We introduce a framework in noncommutative geometry consisting of a $*$-algebra $mathcal A$, a bimodule $Omega^1$ endowed with a derivation $mathcal Ato Omega^1$ and with a Hermitian structure $Omega^1otimes bar{Omega}^1to mathcal A$ (a noncommutative Kahler form), and a cyclic 1-cochain $mathcal Ato mathbb C$ whose coboundary is determined by the previous structures. These data give moment map equations on the space of connections on an arbitrary finitely-generated projective $mathcal A$-module. As particular cases, we obtain a large class of equations in algebra (Kings equations for representations of quivers, including ADHM equations), in classical gauge theory (Hermitian Yang-Mills equations, Hitchin equations, Bogomolny and Nahm equations, etc.), as well as in noncommutative gauge theory by Connes, Douglas and Schwarz. We also discuss Nekrasovs beautiful proposal for re-interpreting noncommutative instantons on $mathbb{C}^nsimeq mathbb{R}^{2n}$ as infinite-dimensional solutions of Kings equation $$sum_{i=1}^n [T_i^dagger, T_i]=hbarcdot ncdotmathrm{Id}_{mathcal H}$$ where $mathcal H$ is a Hilbert space completion of a finitely-generated $mathbb C[T_1,dots,T_n]$-module (e.g. an ideal of finite codimension).
We present a physical interpretation of the doubling of the algebra, which is the basic ingredient of the noncommutative spectral geometry, developed by Connes and collaborators as an approach to unification. We discuss its connection to dissipation
We interpret, in the realm of relativistic quantum field theory, the tangential operator given by Coleman, Mandula as an appropriate coordinate operator. The investigation shows that the operator generates a Snyder-like noncommutative spacetime with
Random noncommutative geometry can be seen as a Euclidean path-integral approach to the quantization of the theory defined by the Spectral Action in noncommutative geometry (NCG). With the aim of investigating phase transitions in random NCG of arbit
We continue the study of fuzzy geometries inside Connes spectral formalism and their relation to multimatrix models. In this companion paper to [arXiv:2007:10914, Ann. Henri Poincare, 2021] we propose a gauge theory setting based on noncommutative ge
We develop the differential aspects of a noncommutative geometry for the Quantum Hall Effect in the continuous, with the ambition of proving Kubos formula. Taking inspiration from the ideas developed by Bellissard during the 80s we build a Fredholm m