ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiconjugate Adaptive Optics for Astronomy

232   0   0.0 ( 0 )
 نشر من قبل Benoit Neichel
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Since the year 2000, adaptive optics (AO) has seen the emergence of a variety of new concepts addressing particular science needs; multiconjugate adaptive optics (MCAO) is one of them. By correcting the atmospheric turbulence in 3D using several wavefront sensors and a tomographic phase reconstruction approach, MCAO aims to provide uniform diffraction limited images in the near-infrared over fields of view larger than 1 arcmin square, i.e., 10 to 20 times larger in area than classical single conjugated AO. In this review, we give a brief reminder of the AO principles and limitations, and then focus on aspects particular to MCAO, such as tomography and specific MCAO error sources. We present examples and results from past or current systems: MAD (Multiconjugate Adaptive Optics Demonstrator) and GeMS (Gemini MCAO System) for nighttime astronomy and the AO system, at Big Bear for solar astronomy. We examine MCAO performance (Strehl ratio up to 40percent in H band and full width at half maximum down to 52 mas in the case of MCAO), with a particular focus on photometric and astrometric accuracy, and conclude with considerations on the future of MCAO in the Extremely Large Telescope and post-HST era.

قيم البحث

اقرأ أيضاً

The Multiconjugate Adaptive Optics RelaY (MAORY) is and Adaptive Optics module to be mounted on the ESO European-Extremely Large Telescope (E-ELT). It is a hybrid Natural and Laser Guide System that will perform the correction of the atmospheric turb ulence volume above the telescope feeding the Multi-AO Imaging Camera for Deep Observations Near Infrared spectro-imager (MICADO). We developed an end-to-end Monte- Carlo adaptive optics simulation tool to investigate the performance of a the MAORY and the calibration, acquisition, operation strategies. MAORY will implement Multiconjugate Adaptive Optics combining Laser Guide Stars (LGS) and Natural Guide Stars (NGS) measurements. The simulation tool implements the various aspect of the MAORY in an end to end fashion. The code has been developed using IDL and uses libraries in C++ and CUDA for efficiency improvements. Here we recall the code architecture, we describe the modeled instrument components and the control strategies implemented in the code.
Astrometry was not a science case of the Gemini Multiconjugate adaptive optics System (GeMS) at its design stage. However, since GeMS has been in regular science operation with the Gemini South Adaptive Optics Imager (GSAOI), their astrometric perfor mances have been deeply analysed. The non-linear component of the distortion map model shows a characteristic pattern which is similarly repeated in each detector of GSAOI. The nature of this pattern was unknown and subjected to different hypotheses. This paper describes the origin of the GeMS distortion pattern as well as its multi-epoch variation. At the end, it is showed a comparison with the current design of the Multiconjugate Adaptive Optics RelaY (MAORY) of the Extremely Large Telescope (ELT).
This paper reviews atoms and ions in the upper atmosphere, including the mesospheric metals Na, Fe, Mg$^+$, Si$^+$, Ca$^+$, K and also non-metallic species N, N$^+$, O, H, considering their potential for astronomical adaptive optics. Na and Fe are th e best candidates for the creation of polychromatic laser guide stars, with the strongest returns coming from transitions that can be reached by excitation at two wavelengths. Ca$^+$ and Si$^+$ have strong visible-light transitions, but require short wavelengths, beyond the atmospheric cutoff, for excitation from the ground state. Atomic O, N and N$^+$ have strong transitions and high abundances in the mesosphere. The product of column density and cross section for these species can be as high as $10^5$ for O and several hundred for N and N$^+$, making them potential candidates for amplified spontaneous emission. However they require vacuum-ultraviolet wavelengths for excitation.
166 - M. Lacy 2018
We present images taken using the Gemini South Adaptive Optics Imager (GSAOI) with the Gemini Multiconjugate Adaptive Optics System (GeMS) in three 2 arcmin$^2$ fields in the Spitzer Extragalactic Representative Volume Survey. These GeMS/GSAOI observ ations are among the first $approx 0.1^{}$ resolution data in the near-infrared spanning extragalactic fields exceeding $1.5^{prime}$ in size. We use these data to estimate galaxy sizes, obtaining results similar to those from studies with the Hubble Space Telescope, though we find a higher fraction of compact star forming galaxies at $z>2$. To disentangle the star-forming galaxies from active galactic nuclei (AGN), we use multiwavelength data from surveys in the optical and infrared, including far-infrared data from Herschel, as well as new radio continuum data from the Australia Telescope Compact Array and Very Large Array. We identify ultraluminous infrared galaxies (ULIRGs) at $z sim 1-3$, which consist of a combination of pure starburst galaxies and Active Galactic Nuclei (AGN)/starburst composites. The ULIRGs show signs of recent merger activity, such as highly disturbed morphologies and include a rare candidate triple AGN. We find that AGN tend to reside in hosts with smaller scale sizes than purely star-forming galaxies of similar infrared luminosity. Our observations demonstrate the potential for MCAO to complement the deeper galaxy surveys to be made with the James Webb Space Telescope.
91 - Stuart D. Ryder 2014
Using the latest generation of adaptive optics imaging systems together with laser guide stars on 8m-class telescopes, we are finally revealing the previously-hidden population of supernovae in starburst galaxies. Finding these supernovae and measuri ng the amount of absorption due to dust is crucial to being able to accurately trace the star formation history of our Universe. Our images of the host galaxies are amongst the sharpest ever obtained from the ground, and reveal much about how and why these galaxies are forming massive stars (that become supernovae) at such a prodigious rate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا