ترغب بنشر مسار تعليمي؟ اضغط هنا

Hexagonal boron nitride as an ideal substrate for carbon nanotube photonics

85   0   0.0 ( 0 )
 نشر من قبل Nan Fang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Hexagonal boron nitride is widely used as a substrate for two-dimensional materials in both electronic and photonic devices. Here, we demonstrate that two-dimensional hexagonal boron nitride is also an ideal substrate for one-dimensional single-walled carbon nanotubes. Nanotubes directly attached to hexagonal boron nitride show bright photoluminescence with narrow linewidth at room temperature, comparable to air-suspended nanotubes. Using photoluminescence excitation spectroscopy, we unambiguously assign the chiralities of nanotubes on boron nitride by tracking individual tubes before and after contact with boron nitride. Although hexagonal boron nitride has a low dielectric constant and is attached to only one side of the nanotubes, we observe that optical transition energies are redshifted as much as ~50 meV from the air-suspended nanotubes. We also perform statistical measurements on more than 400 tubes, and the redshifts are found to be dependent on tube diameter. This work opens up new possibilities for all-solid-state carbon nanotube photonic devices by utilizing hexagonal boron nitride substrates.



قيم البحث

اقرأ أيضاً

We report the fabrication details and low-temperature characteristics of the first carbon nanotube (CNT) quantum dots on flakes of hexagonal boron nitride (hBN) as substrate. We demonstrate that CNTs can be grown on hBN by standard chemical vapor dep osition and that standard scanning electron microscopy imaging and lithography can be employed to fabricate nanoelectronic structures when using optimized parameters. This proof of concept paves the way to more complex devices on hBN, with more predictable and reproducible characteristics and electronic stability.
135 - S. Dai , Q. Ma , M. K. Liu 2015
Hexagonal boron nitride (h-BN) is a natural hyperbolic material, for which the dielectric constants are the same in the basal plane (epsilon^t = epsilon^x = epsilon^y) but have opposite signs (epsilon^t*epsilon^z < 0) from that in the normal plane (e psilon^z). Due to this property, finite-thickness slabs of h-BN act as multimode waveguides for propagation of hyperbolic phonon polaritons - collective modes that originate from the coupling between photons and electric dipoles in phonons. However, control of these hyperbolic phonon polaritons modes has remained challenging, mostly because their electrodynamic properties are dictated by the crystal lattice of h-BN. Here we show by direct nano-infrared imaging that these hyperbolic polaritons can be effectively modulated in a van der Waals heterostructure composed of monolayer graphene on h-BN. Tunability originates from the hybridization of surface plasmon polaritons in graphene with hyperbolic phonon polaritons in h-BN, so that the eigenmodes of the graphene/h-BN heterostructure are hyperbolic plasmon-phonon polaritons. Remarkably, the hyperbolic plasmon-phonon polaritons in graphene/h-BN suffer little from ohmic losses, making their propagation length 1.5-2.0 times greater than that of hyperbolic phonon polaritons in h-BN. The hyperbolic plasmon-phonon polaritons possess the combined virtues of surface plasmon polaritons in graphene and hyperbolic phonon polaritons in h-BN. Therefore, graphene/h-BN structures can be classified as electromagnetic metamaterials since the resulting properties of these devices are not present in its constituent elements alone.
Hexagonal boron nitride (h-BN), one of the hallmark van der Waals (vdW) layered crystals with an ensemble of attractive physical properties, is playing increasingly important roles in exploring two-dimensional (2D) electronics, photonics, mechanics, and emerging quantum engineering. Here, we report on the demonstration of h-BN phononic crystal waveguides with designed pass and stop bands in the radio frequency (RF) range and controllable wave propagation and transmission, by harnessing arrays of coupled h-BN nanomechanical resonators with engineerable coupling strength. Experimental measurements validate that these phononic crystal waveguides confine and support 15 to 24 megahertz (MHz) wave propagation over 1.2 millimeters. Analogous to solid-state atomic crystal lattices, phononic bandgaps and dispersive behaviors have been observed and systematically investigated in the h-BN phononic waveguides. Guiding and manipulating acoustic waves on such additively integratable h-BN platform may facilitate multiphysical coupling and information transduction, and open up new opportunities for coherent on-chip signal processing and communication via emerging h-BN photonic and phononic devices.
We assess the potential of two-terminal graphene-hBN-graphene resonant tunneling diodes as high-frequency oscillators, using self-consistent quantum transport and electrostatic simulations to determine the time-dependent response of the diodes in a r esonant circuit. We quantify how the frequency and power of the current oscillations depend on the diode and circuit parameters including the doping of the graphene electrodes, device geometry, alignment of the graphene lattices, and the circuit impedances. Our results indicate that current oscillations with frequencies of up to several hundred GHz should be achievable.
We show that carbon-doped hexagonal boron nitride (h-BN) has extraordinary properties with many possible applications. We demonstrate that the substitution-induced impurity states, associated with carbon atoms, and their interactions dictate the elec tronic structure and properties of C-doped h-BN. Furthermore, we show that stacking of localized impurity states in small C clusters embedded in h-BN forms a set of discrete energy levels in the wide gap of h-BN. The electronic structures of these C clusters have a plethora of applications in optics, magneto-optics, and opto-electronics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا