ترغب بنشر مسار تعليمي؟ اضغط هنا

The Multiple Points of Fractional Brownian Motion

114   0   0.0 ( 0 )
 نشر من قبل Mark Landry
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Nils Tongring (1987) proved sufficient conditions for a compact set to contain $k$-tuple points of a Brownian motion. In this paper, we extend these findings to the fractional Brownian motion. Using the property of strong local nondeterminism, we show that if $B$ is a fractional Brownian motion in $mathbb{R}^d$ with Hurst index $H$ such that $Hd=1$, and $E$ is a fixed, nonempty compact set in $mathbb{R}^d$ with positive capacity with respect to the function $phi(s) = (log_+(1/s))^k$, then $E$ contains $k$-tuple points with positive probability. For the $Hd > 1$ case, the same result holds with the function replaced by $phi(s) = s^{-k(d-1/H)}$.



قيم البحث

اقرأ أيضاً

To extend several known centered Gaussian processes, we introduce a new centered mixed self-similar Gaussian process called the mixed generalized fractional Brownian motion, which could serve as a good model for a larger class of natural phenomena. T his process generalizes both the well known mixed fractional Brownian motion introduced by Cheridito [10] and the generalized fractional Brownian motion introduced by Zili [31]. We study its main stochastic properties, its non-Markovian and non-stationarity characteristics and the conditions under which it is not a semimartingale. We prove the long range dependence properties of this process.
The generalized fractional Brownian motion is a Gaussian self-similar process whose increments are not necessarily stationary. It appears in applications as the scaling limit of a shot noise process with a power law shape function and non-stationary noises with a power-law variance function. In this paper we study sample path properties of the generalized fractional Brownian motion, including Holder continuity, path differentiability/non-differentiability, and functional and local Law of the Iterated Logarithms.
This paper provides yet another look at the mixed fractional Brownian motion (fBm), this time, from the spectral perspective. We derive an approximation for the eigenvalues of its covariance operator, asymptotically accurate up to the second order. T his in turn allows to compute the exact $L_2$-small ball probabilities, previously known only at logarithmic precision. The obtained expressions show an interesting stratification of scales, which occurs at certain values of the Hurst parameter of the fractional component. Some of them have been previously encountered in other problems involving such mixtures.
116 - S.C. Lim , Chai Hok Eab 2019
Tempered fractional Brownian motion is revisited from the viewpoint of reduced fractional Ornstein-Uhlenbeck process. Many of the basic properties of the tempered fractional Brownian motion can be shown to be direct consequences or modifications of t he properties of fractional Ornstein-Uhlenbeck process. Mixed tempered fractional Brownian motion is introduced and its properties are considered. Tempered fractional Brownian motion is generalised from single index to two indices. Finally, tempered multifractional Brownian motion and its properties are studied.
79 - Ran Wang , Yimin Xiao 2021
Let $X:={X(t)}_{tge0}$ be a generalized fractional Brownian motion (GFBM) introduced by Pang and Taqqu (2019): $$ big{X(t)big}_{tge0}overset{d}{=}left{ int_{mathbb R} left((t-u)_+^{alpha}-(-u)_+^{alpha} right) |u|^{-gamma} B(du) right}_{tge0}, $$ with parameters $gamma in (0, 1/2)$ and $alphain left(-frac12+ gamma , , frac12+ gamma right)$. Continuing the studies of sample path properties of GFBM $X$ in Ichiba, Pang and Taqqu (2021) and Wang and Xiao (2021), we establish integral criteria for the lower functions of $X$ at $t=0$ and at infinity by modifying the arguments of Talagrand (1996). As a consequence of the integral criteria, we derive the Chung-type laws of the iterated logarithm of $X$ at the $t=0$ and at infinity, respectively. This solves a problem in Wang and Xiao (2021).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا