ﻻ يوجد ملخص باللغة العربية
The upper critical field of multiband superconductors is an important quantity that can reveal the details about the nature of the superconducting pairing. Here we experimentally map out the complete upper critical field phase diagram of a stoichiometric superconductor, CaKFe$_4$As$_4$, up to 90T for different orientations of the magnetic field and at temperatures down to 4.2K. The upper critical fields are extremely large, reaching values close to ~3$T_c$ at the lowest temperature, and the anisotropy decreases dramatically with temperature leading to essentially isotropic superconductivity at 4.2K. We find that the temperature dependence of the upper critical field can be well described by a two-band model in the clean limit with band coupling parameters favouring intraband over interband interactions. The large Pauli paramagnetic effects together with the presence of the shallow bands is consistent with the stabilization of an FFLO state at low temperatures in this clean superconductor.
We use polarized inelastic neutron scattering to study the spin-excitations anisotropy in the bilayer iron-based superconductor CaKFe$_4$As$_4$ ($T_c$ = 35 K). In the superconducting state, both odd and even $L-$modulations of spin resonance have bee
We present a comprehensive study of the critical current densities and the superconducting vortex phase diagram in the stoichiometric superconductor CaKFe$_4$As$_4$ which has a critical temperature of 35 K. We performed detailed magnetization measure
$^{57}$Fe Mossbauer spectra at different temperatures between $sim 5$ K and $sim 300$ K were measured on an oriented mosaic of single crystals of CaKFe$_4$As$_4$ . The data indicate that CaKFe$_4$As$_4$ is a well formed compound with narrow spectral
Measurements of the London penetration depth and tunneling conductance in single crystals of the recently discovered stoicheometric, iron - based superconductor, CaKFe$_4$As$_4$ (CaK1144) show nodeless, two effective gap superconductivity with a larg
We report an inelastic neutron scattering study on the spin resonance in the bilayer iron-based superconductor CaKFe$_4$As$_4$. In contrast to its quasi-two-dimensional electron structure, three strongly $L$-dependent modes of spin resonance are foun