ﻻ يوجد ملخص باللغة العربية
It is well established that magnetic free energy associated with electric currents powers solar flares and coronal mass ejections (CMEs) from solar active regions (ARs). However, the conditions that determine whether an AR will produce an eruption are not well understood. Previous work suggests that the degree to which the driving electric currents, or the sum of all currents within a single magnetic polarity, are neutralized may serve as a good proxy for assessing the ability of ARs to produce eruptions. Here, we investigate the relationship between current neutralization and flare/CME production using a sample of 15 flare-active and 15 flare-quiet ARs. All flare-quiet and 4 flare-active ARs are also CME-quiet. We additionally test the relation of current neutralization to the degree of shear along polarity inversion lines (PILs) in an AR. We find that flare-productive ARs are more likely to exhibit non-neutralized currents, specifically those that also produce a CME. We find that flare/CME-active ARs also exhibit higher degrees of PIL shear than flare/CME-quiet ARs. We additionally observe that currents become more neutralized during magnetic flux emergence in flare-quiet ARs. Our investigation suggests that current neutralization in ARs is indicative of their eruptive potential.
The electric current helicity density $displaystyle chi=langleepsilon_{ijk}b_ifrac{partial b_k}{partial x_j}rangle$ contains six terms, where $b_i$ are components of the magnetic field. Due to the observational limitations, only four of the above six
We compare the coronal magnetic energy and helicity of two solar active regions (ARs), prolific in major eruptive (AR~11158) and confined (AR~12192) flaring, and analyze the potential of deduced proxies to forecast upcoming flares. Based on nonlinear
With the aim of understanding how the magnetic properties of active regions (ARs) control the eruptive character of solar flares, we analyze 719 flares of Geostationary Operational Environmental Satellite (GOES) class $geq$C5.0 during 2010$-$2019. We
Statistical dependencies among features of coronal mass ejections (CMEs), solar flares, and sigmoidal structures in soft-X-ray images were investigated. We applied analysis methods to all the features in the same way in order to investigate the repro
The tilt angle, current helicity and twist of solar magnetic fields can be observed in solar active regions. We carried out estimates of these parameters by two ways. Firstly, we consider the model of turbulent convective cells (super-granules) which