ﻻ يوجد ملخص باللغة العربية
We study the complexity of Maximum Clique in intersection graphs of convex objects in the plane. On the algorithmic side, we extend the polynomial-time algorithm for unit disks [Clark 90, Raghavan and Spinrad 03] to translates of any fixed convex set. We also generalize the efficient polynomial-time approximation scheme (EPTAS) and subexponential algorithm for disks [Bonnet et al. 18, Bonamy et al. 18] to homothets of a fixed centrally symmetric convex set. The main open question on that topic is the complexity of Maximum Clique in disk graphs. It is not known whether this problem is NP-hard. We observe that, so far, all the hardness proofs for Maximum Clique in intersection graph classes $mathcal I$ follow the same road. They show that, for every graph $G$ of a large-enough class $mathcal C$, the complement of an even subdivision of $G$ belongs to the intersection class $mathcal I$. Then they conclude invoking the hardness of Maximum Independent Set on the class $mathcal C$, and the fact that the even subdivision preserves that hardness. However there is a strong evidence that this approach cannot work for disk graphs [Bonnet et al. 18]. We suggest a new approach, based on a problem that we dub Max Interval Permutation Avoidance, which we prove unlikely to have a subexponential-time approximation scheme. We transfer that hardness to Maximum Clique in intersection graphs of objects which can be either half-planes (or unit disks) or axis-parallel rectangles. That problem is not amenable to the previous approach. We hope that a scaled down (merely NP-hard) variant of Max Interval Permutation Avoidance could help making progress on the disk case, for instance by showing the NP-hardness for (convex) pseudo-disks.
Multiple interval graphs are variants of interval graphs where instead of a single interval, each vertex is assigned a set of intervals on the real line. We study the complexity of the MAXIMUM CLIQUE problem in several classes of multiple interval gr
We consider the problem of partitioning the set of vertices of a given unit disk graph (UDG) into a minimum number of cliques. The problem is NP-hard and various constant factor approximations are known, with the current best ratio of 3. Our main res
We prove a geometric version of the graph separator theorem for the unit disk intersection graph: for any set of $n$ unit disks in the plane there exists a line $ell$ such that $ell$ intersects at most $O(sqrt{(m+n)log{n}})$ disks and each of the hal
Let $mathcal{D}$ be a set of $n$ disks in the plane. The disk graph $G_mathcal{D}$ for $mathcal{D}$ is the undirected graph with vertex set $mathcal{D}$ in which two disks are joined by an edge if and only if they intersect. The directed transmission
Efficient algorithms are presented for constructing spanners in geometric intersection graphs. For a unit ball graph in R^k, a (1+epsilon)-spanner is obtained using efficient partitioning of the space into hypercubes and solving bichromatic closest p