ترغب بنشر مسار تعليمي؟ اضغط هنا

Demographic Bias in Biometrics: A Survey on an Emerging Challenge

349   0   0.0 ( 0 )
 نشر من قبل Pawel Drozdowski
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Systems incorporating biometric technologies have become ubiquitous in personal, commercial, and governmental identity management applications. Both cooperative (e.g. access control) and non-cooperative (e.g. surveillance and forensics) systems have benefited from biometrics. Such systems rely on the uniqueness of certain biological or behavioural characteristics of human beings, which enable for individuals to be reliably recognised using automated algorithms. Recently, however, there has been a wave of public and academic concerns regarding the existence of systemic bias in automated decision systems (including biometrics). Most prominently, face recognition algorithms have often been labelled as racist or biased by the media, non-governmental organisations, and researchers alike. The main contributions of this article are: (1) an overview of the topic of algorithmic bias in the context of biometrics, (2) a comprehensive survey of the existing literature on biometric bias estimation and mitigation, (3) a discussion of the pertinent technical and social matters, and (4) an outline of the remaining challenges and future work items, both from technological and social points of view.



قيم البحث

اقرأ أيضاً

Recently, concerns regarding potential biases in the underlying algorithms of many automated systems (including biometrics) have been raised. In this context, a biased algorithm produces statistically different outcomes for different groups of indivi duals based on certain (often protected by anti-discrimination legislation) attributes such as sex and age. While several preliminary studies investigating this matter for facial recognition algorithms do exist, said topic has not yet been addressed for vascular biometric characteristics. Accordingly, in this paper, several popular types of recognition algorithms are benchmarked to ascertain the matter for fingervein recognition. The experimental evaluation suggests lack of bias for the tested algorithms, although future works with larger datasets are needed to validate and confirm those preliminary results.
Social media provide access to behavioural data at an unprecedented scale and granularity. However, using these data to understand phenomena in a broader population is difficult due to their non-representativeness and the bias of statistical inferenc e tools towards dominant languages and groups. While demographic attribute inference could be used to mitigate such bias, current techniques are almost entirely monolingual and fail to work in a global environment. We address these challenges by combining multilingual demographic inference with post-stratification to create a more representative population sample. To learn demographic attributes, we create a new multimodal deep neural architecture for joint classification of age, gender, and organization-status of social media users that operates in 32 languages. This method substantially outperforms current state of the art while also reducing algorithmic bias. To correct for sampling biases, we propose fully interpretable multilevel regression methods that estimate inclusion probabilities from inferred joint population counts and ground-truth population counts. In a large experiment over multilingual heterogeneous European regions, we show that our demographic inference and bias correction together allow for more accurate estimates of populations and make a significant step towards representative social sensing in downstream applications with multilingual social media.
Electricity is an essential comfort to support our daily activities. With the competitive increase and energy costs by the industry, new values and opportunities for delivering electricity to customers are produced. One of these new opportunities is electric vehicles. With the arrival of electric vehicles, various challenges and opportunities are being presented in the electric power system worldwide. For example, under the traditional electric power billing scheme, electric power has to be consumed where it is needed so that end-users could not charge their electric vehicles at different points (e.g. a relatives house) if this the correct user is not billed (this due to the high consumption of electrical energy that makes it expensive). To achieve electric mobility, they must solve new challenges, such as the smart metering of energy consumption and the cybersecurity of these measurements. The present work shows a study of the different smart metering technologies that use blockchain and other security mechanisms to achieve e-mobility.
Named Entity Recognition (NER) is often the first step towards automated Knowledge Base (KB) generation from raw text. In this work, we assess the bias in various Named Entity Recognition (NER) systems for English across different demographic groups with synthetically generated corpora. Our analysis reveals that models perform better at identifying names from specific demographic groups across two datasets. We also identify that debiased embeddings do not help in resolving this issue. Finally, we observe that character-based contextualized word representation models such as ELMo results in the least bias across demographics. Our work can shed light on potential biases in automated KB generation due to systematic exclusion of named entities belonging to certain demographics.
The emergence of New Data Sources (NDS) in healthcare is revolutionising traditional electronic health records in terms of data availability, storage, and access. Increasingly, clinicians are using NDS to build a virtual holistic image of a patients health condition. This research is focused on a review and analysis of the current legislation and privacy rules available for healthcare professionals. NDS in this project refers to and includes patient-generated health data, consumer device data, wearable health and fitness data, and data from social media. This project reviewed legal and regulatory requirements for New Zealand, Australia, the European Union, and the United States to establish the ground reality of existing mechanisms in place concerning the use of NDS. The outcome of our research is to recommend changes and enhancements required to better prepare for the tsunami of NDS and applications in the currently evolving data-driven healthcare area and precision or personalised health initiatives such as Precision Driven Health (PDH) in New Zealand.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا