ترغب بنشر مسار تعليمي؟ اضغط هنا

Chandra Observations of NGC 7212: Large-scale Extended Hard X-ray Emission

162   0   0.0 ( 0 )
 نشر من قبل Mackenzie Jones
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent observations of nearby Compton thick (CT) active galactic nuclei (AGNs) with Chandra have resolved hard (>3 keV) X-ray emission extending out from the central supermassive black hole to kiloparsec scales, challenging the long-held belief that the characteristic hard X-ray continuum and fluorescent Fe K lines originate in the inner ~parsec due to the excitation of obscuring material. In this paper we present the results of the most recent Chandra ACIS-S observations of NGC 7212, a CT AGN in a compact group of interacting galaxies, with a total effective exposure of ~150 ks. We find ~20 percent of the observed emission is found outside of the central ~kiloparsec, with ~17 percent associated with the soft X-rays, and ~3 percent with hard X-ray continuum and Fe K line. This emission is extended both along the ionization cone and in the cross-cone direction up to ~3.8 kpc scales. The spectrum of NGC 7212 is best represented by a mixture of thermal and photoionization models that indicate the presence of complex gas interactions. These observations are consistent with what is observed in other CT AGN (e.g., ESO 428-G014, NGC 1068), providing further evidence that this may be a common phenomenon. High-resolution observations of extended CT AGN provide an especially valuable environment for understanding how AGN feedback impacts host galaxies on galactic scales.



قيم البحث

اقرأ أيضاً

We present the spatial analysis of five Compton thick (CT) active galactic nuclei (AGNs), including MKN 573, NGC 1386, NGC 3393, NGC 5643, and NGC 7212, for which high resolution Chandra observations are available. For each source, we find hard X-ray emission (>3 keV) extending to ~kpc scales along the ionization cone, and for some sources, in the cross-cone region. This collection represents the first, high-signal sample of CT AGN with extended hard X-ray emission for which we can begin to build a more complete picture of this new population of AGN. We investigate the energy dependence of the extended X-ray emission, including possible dependencies on host galaxy and AGN properties, and find a correlation between the excess emission and obscuration, suggesting a connection between the nuclear obscuring material and the galactic molecular clouds. Furthermore, we find that the soft X-ray emission extends farther than the hard X-rays along the ionization cone, which may be explained by a galactocentric radial dependence on the density of molecular clouds due to the orientation of the ionization cone with respect to the galactic disk. These results are consistent with other CT AGN with observed extended hard X-ray emission (e.g., ESO 428-G014 and the Ma et al. 2020 CT AGN sample), further demonstrating the ubiquity of extended hard X-ray emission in CT AGN.
We present the Chandra discovery of soft diffuse X-ray emission in NGC 4151 (L[0.5-2keV]~10^{39} erg s$^{-1}$), extending ~2 kpc from the active nucleus and filling in the cavity of the HI material. The best fit to the X-ray spectrum requires either a kT~0.25 keV thermal plasma or a photoionized component. In the thermal scenario, hot gas heated by the nuclear outflow would be confined by the thermal pressure of the HI gas and the dynamic pressure of inflowing neutral material in the galactic disk. In the case of photoionization, the nucleus must have experienced an Eddington limit outburst. For both scenarios, the AGN-host interaction in NGC 4151 must have occured relatively recently (some 10^4 yr ago). This very short timescale to the last episode of high activity phase may imply such outbursts occupy $gtrsim$1% of AGN lifetime.
We present a deep Chandra spectral and spatial study of the kpc-scale diffuse X-ray emission of the Compton thick (CT) AGN ESO428-G014. The entire spectrum is best fit with composite photoionization + thermal models. The diffuse emission is more exte nded at the lower energies (<3 keV). The smaller extent of the hard continuum and Fe K{alpha} profiles imply that the optically thicker clouds responsible for this scattering may be relatively more prevalent closer to the nucleus. These clouds must not prevent soft ionizing X-rays from the AGN escaping to larger radii, in order to have photoionized ISM at larger radii. This suggests that at smaller radii there may be a larger population of molecular clouds to scatter the hard X-rays, as in the Milky Way. The diffuse emission is also significantly extended in the cross-cone direction, where the AGN emission would be mostly obscured by the torus in the standard AGN model. Our results suggest that the transmission of the obscuring region in the cross-cone direction is ~10% than in the cone-direction. In the 0.3-1.5 keV band, the ratio of cross-cone to cone photons increases to ~84%, suggesting an additional soft diffuse emission component, disjoint from the AGN. This could be due to hot ISM trapped in the potential of the galaxy. The luminosity of this component ~5 10^38 erg s^-1 is roughly consistent with the thermal component suggested by the spectral fits in the 170-900 pc annulus.
The recent Chandra discovery of extended $sim$kpc-scale hard ($>$ 3 keV) X-ray emission in nearby Compton-thick (CT) active galactic nuclei (AGN) opens a new window to improving AGN torus modeling and investigating how the central super massive black hole interacts with and impacts the host galaxy. Since there are only a handful of detections so far, we need to establish a statistical sample to determine the ubiquity of the extended hard X-ray emission in CT AGN, and quantify the amount and extent of this component. In this paper, we present the spatial analysis results of a pilot Chandra imaging survey of 7 nearby ($0.006 < z < 0.013$) CT AGN selected from the Swift-BAT spectroscopic AGN survey. We find that five out of the seven CT AGN show extended emission in the 3-7 keV band detected at $>$ 3$sigma$ above the Chandra PSF with $sim$12% to 22% of the total emission in the extended components. ESO 137-G034 and NGC 3281 display biconical ionization structures with extended hard X-ray emission reaching kpc-scales ($sim$ 1.9 kpc and 3.5 kpc in diameter). The other three show extended hard X-ray emission above the PSF out to at least $sim$360 pc in radius. We find a trend that a minimum 3-7 keV count rate of 0.01 cts/s and total excess fraction $>$20% is required to detect a prominent extended hard X-ray component. Given that this extended hard X-ray component appears to be relatively common in this uniformly selected CT AGN sample, we further discuss the implications for torus modeling and AGN feedback.
Using the latest 70 month Swift-BAT catalog we examined hard X-ray selected Seyfert I galaxies which are relatively little known and little studied, and yet potentially promising to test the ionized relativistic reflection model. From this list we ch ose 13 sources which have been observed by XMM-Newton for less than 20 ks, in order to explore the broad band soft to hard X-ray properties with the analysis of combined XMM-Newton and Swift data. Out of these we found seven sources which exhibit potentially promising features of the relativistic disc reflection, such as a strong soft excess, a large Compton hump and/or a broadened Fe line. Longer observations of four of these sources with the currently operating satellite missions, such as Suzaku, XMM-Newton and NuStar and two others by such future missions as ASTRO-H, will be invaluable, in order to better understand the relativistic disc reflection closest to the central black hole and constrain such important effects of strong gravity as the black hole spin.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا