ترغب بنشر مسار تعليمي؟ اضغط هنا

Branching fractions for $P_{3/2}$ decays in Ba$^+$

130   0   0.0 ( 0 )
 نشر من قبل Murray Barrett
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Branching fractions for decays from the $P_{3/2}$ level in $^{138}$Ba$^+$ have been measured with a single laser-cooled ion. Decay probabilities to $S_{1/2}$, $D_{3/2}$ and $D_{5/2}$ are determined to be $0.741716(71)$, $0.028031(23)$ and $0.230253(61)$, respectively, which are an order of magnitude improvement over previous results. Our methodology only involves optical pumping and state detection, and is hence relatively free of systematic effects. Measurements are carried out in two different ways to check for consistency. Our analysis also includes a measurement of the $D_{5/2}$ lifetime, for which we obtain 30.14(40),s.



قيم البحث

اقرأ أيضاً

Measurement of the branching ratios for $6P_{1/2}$ decays to $6S_{1/2}$ and $5D_{3/2}$ in $^{138}$Ba$^+$ are reported with the decay probability from $6P_{1/2}$ to $5D_{3/2}$ measured to be $p=0.268177pm(37)_mathrm{stat}-(20)_mathrm{sys}$. This resul t differs from a recent report by $12sigma$. A detailed account of systematics is given and the likely source of the discrepancy is identified. The new value of the branching ratio is combined with a previous experimental results to give a new estimate of $tau=7.855(10),mathrm{ns}$ for the $6P_{1/2}$ lifetime. In addition, ratios of matrix elements calculated from theory are combined with experimental results to provide improved theoretical estimates of the $6P_{3/2}$ lifetime and the associated matrix elements.
108 - D. De Munshi , T. Dutta , R. Rebhi 2014
The branching fractions from the excited state $6P_{1/2}$ of singly charged barium ion has been measured with a precision $0.05%$ in an ion trap experiment. This measurement along with the known value of the upper state life-time allowed the determin ation of the dipole matrix elements for the transitions $P-S$ and $P-D$ to below one percent level. Therefore, for the first time it is now possible to compare the many body calculations of these matrix elements at level which is of significance to any parity non-conservation experiment on barium ion. Moreover, these dipole matrix elements are the most significant contributors to the parity violating matrix element between the $S-D$ transition, contributing upto $90%$ to the total. Our results on the dipole matrix elements are $3.306pm0.014$ and $3.036pm0.016$ for the $S-P$ and $P-D$ transitions respectively.
We present a measurement of the branching fractions for decay from the long-lived $5D_{5/2}$ level in Ba. The branching fraction for decay into the $6S_{1/2}$ ground state was found to be $0.846(25)_{mathrm{stat}}(4)_{mathrm{sys}}$. We also report an improved measurement of the $5D_{5/2}$ lifetime, $tau_{5D_{5/2}}=31.2(0.9)$~s. Together these measurements provide the first experimental determination of transition rates for decay out of the $5D_{5/2}$ level. The low ($<7 times 10^{-12}$~Torr) pressure in the ion trap in which these measurements were made simplified data acquisition and analysis. Comparison of the experimental results with theoretical predictions of the transition rates shows good agreement.
Isotope shifts of the 2$p_{3/2}$-2$p_{1/2}$ transition in B-like ions are evaluated for a wide range of the nuclear charge number: Z=8-92. The calculations of the relativistic nuclear recoil and nuclear size effects are performed using a large scale configuration-interaction Dirac-Fock-Sturm method. The corresponding QED corrections are also taken into account. The results of the calculations are compared with the theoretical values obtained with other methods. The accuracy of the isotope shifts of the 2$p_{3/2}$-2$p_{1/2}$ transition in B-like ions is significantly improved.
A semi-empirical method is used to characterize the 3s(2)3p(2)-3s3p(3) J=2 transition array in P II. In this method, Slater, spin-orbit, and radial parameters are fitted to experimental energy levels in order to obtain a description of the array in t erms of LS-coupling basis vectors. The various IC and CI amplitudes resulting from this model are then used to predict the branching fractions of transitions within the array. Results close to LS-coupling values are presented, and these are compared to branching ratios measured using beam-foil spectroscopy at the THIA laboratory. The work provides support for the hypothesis of Dr. Curtis that transition arrays with little upper state IC but significant upper state CI in atoms of low Z exhibit branching fractions close to LS-coupled values, although the data are inconclusive in this respect.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا