ﻻ يوجد ملخص باللغة العربية
We carry out density functional theory calculation to enhance the Rashba spin splitting (RSS) of BiTeI by modifying the interlayer interaction. It is shown that RSS increases as the Te layer approaches to adjacent Bi layer or the I layer recedes from the Bi layer. Our results indicate that the RSS can be sensitively increased by introducing a vacancy on the Te site to make effective Bi-Te distance shorter. It is also found that the difference of Te p orbital character between two spin-split bands increases when the RSS is developed along crystal momentum, which supports asymmetric interlayer interaction in the spin-split bands. Our work suggests that the modification of interlayer interaction is an effective approach in the modeling of the RSS in BiTeI and other layered materials.
Rashba spin splitting in two-dimensional (2D) semiconductor systems is generally calculated in a ${bf k} cdot {bf p}$ Luttinger-Kohn approach where the spin splitting due to asymmetry emerges naturally from the bulk band structure. In recent years, s
We observe a giant spin-orbit splitting in bulk and surface states of the non-centrosymmetric semiconductor BiTeI. We show that the Fermi level can be placed in the valence or in the conduction band by controlling the surface termination. In both cas
Following the recent isolation of monolayer CrI3, there has been a surge of new two-dimensional van der Waals magnetic materials, whose incorporation in van der Waals heterostructures offers a new platform for spintronics, proximity magnetism, and qu
We study the magneto-optical (MO) response of polar semiconductor BiTeI with giant bulk Rashba spin splitting at various carrier densities. Despite being non-magnetic, the material is found to yield a huge MO activity in the infrared region under mod
The bulk Rashba semiconductors BiTeX (X=I, Cl and Br) with intrinsically enhanced Rashba spin-orbit coupling provide a new platform for investigation of spintronic and magnetic phenomena in materials. We theoretically investigate the interlayer excha