ترغب بنشر مسار تعليمي؟ اضغط هنا

Energy conditions in general relativity and quantum field theory

61   0   0.0 ( 0 )
 نشر من قبل Eleni-Alexandra Kontou
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This review summarizes the current status of the energy conditions in general relativity and quantum field theory. We provide a historical review and a summary of technical results and applications, complemented with a few new derivations and discussions. We pay special attention to the role of the equations of motion and to the relation between classical and quantum theories. Pointwise energy conditions were first introduced as physically reasonable restrictions on matter in the context of general relativity. They aim to express e.g. the positivity of mass or the attractiveness of gravity. Perhaps more importantly, they have been used as assumptions in mathematical relativity to prove singularity theorems and the non-existence of wormholes and similar exotic phenomena. However, the delicate balance between conceptual simplicity, general validity and strong results has faced serious challenges, because all pointwise energy conditions are systematically violated by quantum fields and also by some rather simple classical fields. In response to these challenges, weaker statements were introduced, such as quantum energy inequalities and averaged energy conditions. These have a larger range of validity and may still suffice to prove at least some of the earlier results. One of these conditions, the achronal averaged null energy condition, has recently received increased attention. It is expected to be a universal property of the dynamics of all gravitating physical matter, even in the context of semiclassical or quantum gravity.

قيم البحث

اقرأ أيضاً

Most early twentieth century relativists --- Lorentz, Einstein, Eddington, for examples --- claimed that general relativity was merely a theory of the aether. We shall confirm this claim by deriving the Einstein equations using aether theory. We shal l use a combination of Lorentzs and Kelvins conception of the aether. Our derivation of the Einstein equations will not use the vanishing of the covariant divergence of the stress-energy tensor, but instead equate the Ricci tensor to the sum of the usual stress-energy tensor and a stress-energy tensor for the aether, a tensor based on Kelvins aether theory. A crucial first step is generalizing the Cartan formalism of Newtonian gravity to allow spatial curvature, as conjectured by Gauss and Riemann.
In this note we show that Newton-Schrodinger Equations (NSEs) [arXiv:1210.0457 and references therein] do not follow from general relativity (GR) and quantum field theory (QFT) by way of two considerations: 1) Taking the nonrelativistic limit of the semiclassical Einstein equation, the central equation of relativistic semiclassical gravity, a fully covariant theory based on GR+QFT with self-consistent backreaction of quantum matter on the spacetime dynamics; 2) Working out a model [see C. Anastopoulos and B. L. Hu, Class. Quant. Grav. 30, 165007 (2013), arXiv:1305.5231] with a matter scalar field interacting with weak gravity, in procedures analogous to the derivation of the nonrelativistic limit of quantum electrodynamics. We conclude that the coupling of classical gravity with quantum matter can only be via mean fields, there are no $N$-particle NSEs and theories based on Newton-Schrodinger equations assume unknown physics.
206 - J. David Brown 2020
The general relativistic theory of elasticity is reviewed from a Lagrangian, as opposed to Eulerian, perspective. The equations of motion and stress-energy-momentum tensor for a hyperelastic body are derived from the gauge-invariant action principle first considered by DeWitt. This action is a natural extension of the action for a single relativistic particle. The central object in the Lagrangian treatment is the Landau-Lifshitz radar metric, which is the relativistic version of the right Cauchy-Green deformation tensor. We also introduce relativistic definitions of the deformation gradient, Green strain, and first and second Piola-Kirchhoff stress tensors. A gauge-fixed description of relativistic hyperelasticity is also presented, and the nonrelativistic theory is derived in the limit as the speed of light becomes infinite.
A problem in general relativity is, how the gravitational field can transfer energy and momentum between different distant places. The issue is that matter stress tensor is locally conserved, with no explicit interaction with the free gravitational f ield, which is represented by the Weyl tensor. In this paper we explicitly construct an interaction tensor for free gravity and matter, that depicts the interplay between the energy momentum tensor of free gravity, which is taken to be the symmetric two index square root of Bell-Robinson tensor, and matter. This is examined both in the case of Coulomb-like Petrov type D spacetimes and radiation like Petrov type N spacetimes, where a unique square root exists. The first case generalises the Tweedledum and Tweedledee thought experiment regarding gravitational induction in Newtonian gravity to general relativistic scenarios, and the second gives a proposal for how gravitational radiation can transfer energy and momentum between distant objects separated by a vacuum.
The junction conditions for General Relativity in the presence of domain walls with intrinsic spin are derived in three and higher dimensions. A stress tensor and a spin current can be defined just by requiring the existence of a well defined volume element instead of an induced metric, so as to allow for generic torsion sources. In general, when the torsion is localized on the domain wall, it is necessary to relax the continuity of the tangential components of the vielbein. In fact it is found that the spin current is proportional to the jump in the vielbein and the stress-energy tensor is proportional to the jump in the spin connection. The consistency of the junction conditions implies a constraint between the direction of flow of energy and the orientation of the spin. As an application, we derive the circularly symmetric solutions for both the rotating string with tension and the spinning dust string in three dimensions. The rotating string with tension generates a rotating truncated cone outside and a flat space-time with inevitable frame dragging inside. In the case of a string made of spinning dust, in opposition to the previous case no frame dragging is present inside, so that in this sense, the dragging effect can be shielded by considering spinning instead of rotating sources. Both solutions are consistently lifted as cylinders in the four-dimensional case.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا